
February, 1998

GemCore ChipSet
Controller
Software

Version 2.0

 GEMPLUS i

ABOUT THIS DOCUMENT

This document provides information about the GemCore ChipSet Controller
software. You will find a detailed description of the GemCore ChipSet hardware in
the GemCore Technical Specifications.

This document is to be used by anyone wishing to build electronic system
implementing the use of a Smart Card Interface.

The following paragraphs tell you where to find information when you need it. It is
important that you read this section in order to use this document to its full
potential.

Read the Overview for an overall description of the GemCore ChipSet Controller.

Read this section for a description of the existing protocols between the GemCore
ChipSet Controller and the host system.

Read the GCC Interface Commands section for a description of the GemCore
ChipSet Controller commands, the functions they perform, their syntax and the
format you send them in to the GemCore ChipSet.

The GemCore ChipSet Controller supports ISO 7816-3 T=0 and the T=1 protocol
microprocessor cards. Read this section for a description of these standards.

Read this section for a summary of a all the commands used with memory cards.

The status codes returned by the GemCore ChipSet Controller are listed in this
section.

This section describes the instructions and macro commands dedicated to
synchronous cards handled by the GemCore interpreter

Audience

How to Use This
Guide

Overview

The GCC
Protocols

The GCC
Interface
Commands

Using the GCC
with
Microprocessor
Cards

Using the GCC
with Memory
Cards

Status Codes

Interpreted
Synchronous
Smart Card
Driver

 GEMPLUS ii

CONTENTS

ABOUT THIS DOCUMENT i

Audience ... i

How To Use This Document.. i

OVERVIEW 1

GEMCORE CHIPSET PROTOCOLS 2

Command Layer..3

Transport Layer...4

TLP224..4

GEMPLUS Block Protocol...5

Physical Layer ...7

Serial Asynchronous Protocol ..7

GEMCORE CHIPSET CONTROLLER INTERFACE COMMANDS 8

Command Format ...8

Configuration GemCore ChipSet Controller Commands..................................9

Card Interface Command Set...13

APDU Format..19

Command Format ..19

USING THE GEMCORE CHIPSET CONTROLLER
WITH MICROPROCESSOR CARDS 24

Clock Signal..24

Global Interface Parameters...24

TA1 Parameter ..24

TB1 and TB2 ...24

TC1 ...25

Communication Protocols..26

T=0 Protocol..26

T=1 Protocol..26

USING THE GEMCORE CHIPSET CONTROLLER
WITH MEMORY CARDS 27

APPENDIX A. STATUS CODES 30

APPENDIX B. INTERPRETED
SYNCHRONOUS SMART CARD DRIVER 32

 GEMPLUS 1

OVERVIEW

The present document describes the interface between your application and the
GemCore ChipSet Controller.

Composed of one programmed controller and one smart card interface chip -the
GEMPLUS IC100- the GemCore ChipSet is designed to simplify the integration of
Smart Card interface to electronic devices and manages the communication with
ISO 7816 1/2/3/4 compatible smart card.

The software inside the controller is compatible with the GEMPLUS Readers
Operating System (OROS). It includes the communication protocols with the host
system (GBP or TLP protocol) as well as the protocols with synchronous and
asynchronous smart cards.

The connection with the host system is done with a serial asynchronous port in
TTL level.

 GEMPLUS 2

GEMCORE CHIPSET PROTOCOLS

All transmissions with the GemCore ChipSet are handled by three protocol layers:

• the command layer

• the transport layer

• the physical layer

The command layer handles and interprets the GemCore ChipSet commands. It
consists of the command code, data, and parameters.

The transport layer handles the message addressing, specifies the transmission type,
and validates each transmission. The transport layer can use one of two protocols:
the TLP224 protocol and the GEMPLUS Block Protocol.

The physical layer handles the data transmission itself. The physical layer uses the
Serial TTL protocol.

The following diagram shows the three-layer protocol.

Host System

GEMCore Controller

GBP

Serial TTL

Smart Card

Command Layer

Transport Layer

Physical LayerSerial TTL

TLP

Command Set

The following paragraphs describe the protocol layers in more details.

GEMCORE CHIPSET PROTOCOLS

 GEMPLUS 3

The command layer handles and interprets the GemCore ChipSet commands. It
consists of the command code, data, and parameters.

You send commands in the following format:

|CommCode|Parameters|Data|

where:

CommCode is the command code.

Parameters are the parameters sent with the command.

Data is the data accompanying the command, where
appropriate.

The GemCore ChipSet Interface Commands section describes the CommCode,
Parameters, and Data field values for each command.

The GCC replies to every command it receives with a status code formatted as
follows:

|S|Data|

where:

S Status code identifier.

Data Data returned with the status code, where appropriate.

Command Layer

GEMCORE CHIPSET PROTOCOLS

 GEMPLUS 4

The transport layer handles the message addressing, specifies the transmission type,
and validates each transmission. The GCC transport layer can use one of two
protocols: the TLP224 protocol and the GEMPLUS Block Protocol. The following
paragraphs describe these.

The TLP protocol processing consists of two steps. The first step is to construct the
message to be transmitted. Under the TLP224 protocol, the exchange
transmissions have the following format:

For messages transmitted without error:

<ACK><LN><MESSAGE><LRC>

where:

ACK 60h, indicating that the previous command or status code
was transmitted without error.

LN Length of the message (command or status code)

MESSAGE Command or status code.

LRC The result of an EXCLUSIVE OR (XOR) between the
characters ACK, LN, and MESSAGE.

When an error is detected in the transmission:

<NACK><LN><LRC>

where:

NACK E0h, indicating that there was an error in a message
transmission.

LN 00

LRC E0

During the second step the source performs the following processing:

• converts each byte to be transmitted into two ASCII characters. For example,
to transmit the byte 3Ah, the source would transmit the values 33h and 41h.
This prevents other equipment from interpreting the control characters.

• adds an End Of Transmission (EOT) byte to the end of the transmission. This
has the value 03h.

For example, to transmit the power down command under the TLP224 protocol,
which has the command code 4Dh and no parameter, the following sequence would
be transmitted:

ACK LEN Message LRC EOT

Command 60 01 4D 2C

TLP Protocol
Transmission

36 30 30 31 34 44 32 43 03

The time-out between each character is 100 ms.

Transport Layer

TLP224

GEMCORE CHIPSET PROTOCOLS

 GEMPLUS 5

The GEMPLUS Block Protocol (GBP) is a simplified version of the T=1 card
protocol. Under the GBP, data is transmitted in blocks between the source and the
destination. There are three types of blocks:

• I-Blocks. (Information Blocks). I-Blocks hold the data to be exchanged
between the source and the destination.

• R-Blocks (Receive Ready Block). R-Blocks hold positive or negative
acknowledgments to transmissions.

• S-Blocks (Supervisory Block). S-Blocks synchronize transmissions between
the source and the destinations.

Data is exchanged in the following format:

NAD PCB LEN DAT EDC

where:

NAD is the source and the destination identifier formatted as follows on one byte:

7 6 5 4 3 2 1 0

Destination Identifier

Source Identifier

The GemCore ChipSet identifier is 4 and the host system identifier is 2.

PCB identifies the block type. Its format depends on the block type, as described
below:

I-Block PCBs have the following format:

7 6 5 4 3 2 1 0

Not used

Sequence Bit (see below)

Bit

0 S 0

The sequence bit is zeroized on power up. The source sends the first I-Block that it
transmits with the sequence bit set to 0. It increments the sequence bit by 1 each
time it sends an information block. The GemCore ChipSet Controller and the host
system generate sequence bit values independently.

R-Block PCBs have the following format:

7 6 5 4 3 2 1 0Bit

1 0 0 S 0 0 E V

1 = Error being verified by EDC

1= Another error is detected

1 = Sequence number

error is detected in

GEMPLUS Block
Protocol

GEMCORE CHIPSET PROTOCOLS

 GEMPLUS 6

S-Blocks request the destination to zeroize the sequence bits and return a response
to the source; this response indicates that the response is fulfilled.

S-Block PCBs have the following format:

7 6 5 4 3 2 1 0Bit

1 1 0 0 0 0 0 0

7 6 5 4 3 2 1 0Bit

1 1 1 0 0 0 0 0

Resynch request

Resynch response

LEN specifies, on one byte, the number of bytes in the INF field (see below).

DAT holds the data being transmitted.

EDC is the result of an exclusive OR performed on the NAD, PCB, LEN, and DAT
bytes.

The following examples show some transmission types under the GBP protocol.

Transmission without error:

Host GemCore ChipSet

I (0)

I (0)

I (1)

I (1)

Controller

Transmission with error:

Host GemCore ChipSet

I (0)

R (0)

I (0)

I (0)

Case 1. Case 2.

R (0)

I (0)

I (0)

I (0)

Case 3.

I (0)

R (0)

I (0)

I (0)

R (0)

I (1)

R (0)

I (0)

R (0)

I (0)

I (0)

R (0)

I (1)

R (1)

Case 5.

Case 4.

I (0)

R (0)

I (0)

I (0)

R (0)

I (1)

R (1)

I (0)

I (0)

R (0)

I (0)

I (1)

R (0)

R (1)

Case 6.

R (0)

R (1)

Host

I (1)

Controller

GemCore ChipSet

Controller

Examples

GEMCORE CHIPSET PROTOCOLS

 GEMPLUS 7

The physical layer handles the data transmission itself. The physical layer uses the
Serial protocol.

The Serial Asynchronous Protocol can be sent directly on the serial line.

The bytes are sent over the line by an UART whose transmission characteristics
(such as speed and parity) are determined by the configuration of the GemCore
ChipSet Controller.

 The default configuration is 9600 baud, 8 bits, no parity and 1 stop bit.

Physical Layer

Serial
Asynchronous
Protocol

 GEMPLUS 8

GEMCORE CHIPSET CONTROLLER INTERFACE
COMMANDS

This section describes the GemCore ChipSet Controller commands. For each
command it describes:
• the functions it performs
• its syntax
• the data it returns

The commands are grouped into command sets. The GemCore ChipSet Controller
command sets are:
• Configuration
• Card interface #0
• Card interface #1
The rest of this section describes the GemCore ChipSet Controller commands.

You send commands to the GemCore ChipSet in the following format:

|CommCode|Parameters|Data|

where:

CommCode is the command code.
Parameters are the parameters sent with the command.
Data is the data accompanying the command, where

appropriate.
The GemCore ChipSet commands section describes the CommCode, Parameters,
and Data field values for each command.

The GemCore ChipSet replies to every command it receives with a status code
formatted as follows:

|S|Data|

where:

S Status code identifier.
Data Data returned with the status code, where appropriate.
Appendix A lists the status codes and their meanings.

Command
Format

INTERFACE COMMANDS

 GEMPLUS 9

The following pages describe the GemCore ChipSet Controller commands.

The GemCore ChipSet Controller configuration commands are:

• Configure SIO Line

• Set Mode

• Set Delay

• Read Firmware Version

Find in this section a description of these commands.

Configuration
GemCore
ChipSet
Controller
Commands

INTERFACE COMMANDS

 GEMPLUS 10

CONFIGURE SIO LINE

This command sets the SIO line parity, Baud rate, and number of bits per character.
After a power up the line defaults to no parity, 8 bits per character and 9600 Baud.

Note: The line is reconfigured as soon as this command is executed. The response
is returned with the newly specified parameters.

0Ah CB

where:

CB = configuration byte. Flag the required configuration according to the
following table:

Bit Value Option Selected

7 to 5 Not used

4 0 No parity

1 Even parity

3 0 8 bits per character

1 7 bits per character

2 to 0 xxx Sets the baud rate according to the following table:

Value Baud rate selected

000 RFU

001 76 800

010 38 400

011 19 200

100 9 600

101 4 800

110 2 400

111 1 200

Format

INTERFACE COMMANDS

 GEMPLUS 11

SET MODE

This command enables you to disable ROS command compatibility and define the
GemCore ChipSet operation mode (TLP or Normal). The GemCore ChipSet
defaults to ROS command compatibility enabled and TLP mode.

Notes:
1. Disabling ROS command compatibility disables this command. You can only

enable again ROS command compatibility by performing a hardware reset
on the GemCore ChipSet so that the default configuration is reinstated.

2. Disabling ROS command compatibility also disables TLP mode, irrespective of
the value of bit 4 (see below).

01h 00h [OB]

where:

[OB] = option selection byte. Flag the required options according to the following
table:

Native ROS TLP

xxxx1xx1 ∨ ∨ ∨

xxxx1xx0 ∨ ∨

xxxx0xx0 ∨

Note: If you do not send this byte, the GemCore ChipSet operation mode is not
modified, however, the result is returned.

S <mode>

where:

[mode] = The mode the GemCore ChipSet is operating in. This is returned on one
byte that flags the operation mode according to the following table:

Native ROS TLP

00001001 ∨ ∨ ∨

00001000 ∨ ∨

00000000 ∨

Note: In TLP mode, the GemCore ChipSet Controller adds the TA1, TB1, TC1,
TD1 bytes if they are not present in an asynchronous card Answer to Reset.

Format

Result

INTERFACE COMMANDS

 GEMPLUS 12

SET DELAY

If you are using a slow host computer with the GemCore ChipSet Controller, you
can use this command to delay responses.

23h 01h 00h 4Ch 01h Delay

where:

Delay = response delay in ms. Enter a value between 0 and 255. On power up,
the delay time defaults to 0.

Send Command

Execute Command
Delay

Response

Host

Reader

READ FIRMWARE VERSION

Returns the version of the firmware installed in the GemCore ChipSet.

22h 05h 3Fh E0h 10h

S Version

where:

Version (GemCore-XXXX) is the installed software

version in ASCII.

OROS compatible command:

22h 05h 3Fh F0h 10h

S OROS-R2.99-R1.00

Format

Format

Result

Format

Result

INTERFACE COMMANDS

 GEMPLUS 13

The card interface commands manage all communications with smart cards. The
card interface commands are:

• Power Down

• Power Up

• ISO Output

• ISO Input

• Exchange APDU

• Define Card type

• Card Status

The following paragraphs describe these commands.

Card Interface
Command Set

INTERFACE COMMANDS

 GEMPLUS 14

POWER DOWN

Use this command to power down the card. The GemCore ChipSet Controller
powers down automatically when a card is removed.

11h Card #0

19h Card #1

4Dh 00h 00h 00h Card #0 only

S

The power down command always ends without error if a card is present in the
GemCore ChipSet.

If no card is inserted, the command returns the Fbh error "card absent".

GCC Format

ROS Format

Result

INTERFACE COMMANDS

 GEMPLUS 15

 POWER UP

This command powers up and resets a card.

12h [CFG][PTS0,PTS1,PTS2,PTS3,PCK] Card #0

1Ah [CFG][PTS0,PTS1,PTS2,PTS3,PCK] Card #1

6Eh 00h 00h 00h Card #0 only

There is no CFG parameter: the card is powered by 5V, there is no PTS
management and the operating mode is compatible with OROS2.2X

The parameter CFG is present:

XXXXXX01 Class A Vcc for Card or Module is 5V

XXXXXX10 Class B Vcc for Card or Module is 3V

XXXXXX11 Class AB Vcc for Card or Module is 5V or 3V

0000XXXX Operation is compatible with OROS2.2X

0001XXXX Reset and no PTS management. The GemCore ChipSet
stays at 9600 baud if the card is in negotiable mode.

0010XXXX Reset and automatic PTS management. The GemCore
ChipSet takes the highest speed proposed by the card.
Change to T=1 protocol if there is a choice between T=0
and T=1.

1111XXXX Manual management of PTS. This command does not
reset the card. It must be preceded by a command with the
PTS parameter at 0001XXXX. The parameters from
PTS0 to PCK are sent to the card at 9600 baud. If the card
replies with PTS REQUEST, the GemCore ChipSet is
configured using the sent parameters.

S <card response>

where:

<card response> = the card Answer to Reset.

Note: For cards that do not return an Answer to Reset, a default Answer to Reset
is returned: 3B 00 00 00 00 00

Using the ROS command, if TLP compatibility is enabled, the ATR is preceded by
three bytes R1, R2, R3.

R1: compatibility mode 28h: TLP

01h: ROS

R2: current card type

R3: ATR length

GCC Format

ROS Format

Result

INTERFACE COMMANDS

 GEMPLUS 16

Note: When the TLP compatibility is enabled (see Set Mode command) the TA1,
TB1, TC1 and TD1 bytes absent from the Answer to Reset are returned with
their default value:

TA1 TB1 TC1 TD1

Asynchronous Card 11h 25h 00h 00h

Synchronous Card 00h 00h 00h 00h

INTERFACE COMMANDS

 GEMPLUS 17

ISO OUTPUT

This command sends ISO Out commands, that is, commands that retrieve data
from a card. For memory cards, specific commands that are formatted in the same
way as ISO commands are accepted. These commands are listed in the Using the
GemCore ChipSet Controller with Memory Cards section.

13h CLA INS A1 A2 LN Card #0

1Bh CLA INS A1 A2 LN Card #1

DBh CLA INS A1 A2 LN Card #0 only

where:

CLA, INS, A1, A2, and LN are the five ISO header bytes. For more details about
the ISO header contents, refer to the documentation relevant to the card you are
using. The ISO header is directly transmitted to microprocessor cards
(asynchronous cards) and is interpreted by the GemCore ChipSet Controller for
GEMPLUS memory cards.

S
<data> SW1 SW2

where:

<data> = Up to 252 bytes of data returned by the card. If a smart card error or
GCC error is detected (S<>0 and S<>E7h), the GCC does not return any data.
The card may return any number of bytes up to LN.

GCC Format

ROS Format

Result

INTERFACE COMMANDS

 GEMPLUS 18

ISO INPUT

This command sends ISO In commands, that is, commands that send data to a
card. For memory cards, the GemCore ChipSet Controller accepts specific
commands that are formatted in the same way as ISO commands. These
commands are listed in the Using the GemCore ChipSet Controller with Memory
Cards section.

14h CLA INS A1 A2 LN <data> Card #0

1Ch CLA INS A1 A2 LN <data> Card #1

DAh CLA INS A1 A2 LN <data> Card #0 only

where:

CLA, INS, A1, A2, and LN are the five ISO header bytes. For more details about
the ISO header contents, refer to the documentation relevant to the card you are
using. The ISO header is directly transmitted to microprocessor cards
(asynchronous cards) and is interpreted by the GCC for GEMPLUS memory cards.

<data> represents the LN data bytes transmitted to the card after the ISO header.
The maximum length of the data is 248 bytes.

S SW1 SW2

The bytes SW1 and SW2 hold the standard status codes returned by the card. Their
respective values are 90h and 00h if the operation is successful.

Note: For GEMPLUS memory cards, SW1 and SW2 are returned.

GCC Format

ROS Format

Result

INTERFACE COMMANDS

 GEMPLUS 19

EXCHANGE APDU

Sends a command Application Data Protocol Unit (APDU) to a card, and retrieves
the response APDU. You can only execute this command on T=1 protocol cards.

15h APDU Card #0

1Dh APDU Card #1

where:

APDU = the command APDU. If the APDU command length is greater than the
card information field size, it is truncated and sent to the card in several chained
blocks. The command APDU must not exceed 248 bytes in length. See the
documentation for the card in use for the APDU command details.

S Response APDU

where:

Response APDU = the response APDU to the command. If the card replies in
chained blocks, they are concatenated. The response APDU must not exceed 252
bytes in length. See the documentation for the card in use for the APDU response
details.

The APDU format is defined by the ISO 7816-4 standard.

APDUs can belong to one of several cases, depending on the length and contents of
the APDU. The GemCore ChipSet Controller supports the following cases

Case 1-no command or response data.

Case 2-Short format: command data between 1 and 255 bytes and no response data.

Case 3-Short format: no command data, between 1 and 256 bytes.

Case 4-Short format: command data between 1 and 255 bytes, response data
between 1 and 256 bytes.

These cases are referred to as 1, 2S, 3S, and 4S respectively.

Commands are accepted in the following format:

Header Body

CLA INS P1 P2 Lc Parameters/data Le

The fields are described below:

The Header fields are mandatory, and are as follows:

Field Name Length Description

CLA 1 Instruction class.

INS 1 Instruction code. This is given with the
command descriptions.

P1 1 Parameter 1.

P2 1 Parameter 2.

GCC & ROS
Format

Result

APDU Format

Command
Format

Header Fields

INTERFACE COMMANDS

 GEMPLUS 20

The command body is optional. It includes the following fields:

Field Name Length Description

Lc 1 Data length

Data Lc Command parameters or data

Le 1 Expected length of data to be returned

For full details about the Header and Body field contents refer to the documentation
for the card in use.

Responses to commands are received in the following format.

Body Trailer

Data SW1, SW2

The Body is optional and holds the data returned by the card.

The Trailer includes the following two mandatory bytes:

SW1: Status byte 1 that returns the command processing status

SW2: Status byte 2 that returns the command processing qualification

For full details about the Response field contents refer to the documentation for the
card in use.

In case of chaining, the buffer length is determined by IFSC and IFSD parameters.
The default value is 32 bytes for IFSD (data buffer length).

If in the ATR the smart card indicates an IFSC (Card data buffer length) value, the
GemCore ChipSet considers that value as the IFSD length and will use it for
chained exchanges with the smart card.

Body Fields

Response Format

IFSC/IFSD

INTERFACE COMMANDS

 GEMPLUS 21

DEFINE CARD TYPE

The GemCore ChipSet Controller does not have a smart card recognition
algorithm. You must define the card type in use. This command sets the card type
and programming voltage. Note that the ROS and GCC versions of this command
are different. The two formats are described below.

Note: When the OROS based GemCore ChipSet is reset or powered up, the card
type defaults to microprocessor card in standard mode (Type 2).

17h T Card #0

1Fh T 01h Card #1

02h T Card #0 only

where:

T = Card type selection byte. Enter the code for the card type that you are using on
the four least significant bits (bits 3 to 0). The card type codes are as follows:

Enter this code: To use this card:

01h Other synchronous smart cards; interpreted driver. See
Appendix B.

02h Standard speed mode (clock frequency = 3.6864 MHz) ISO
7816-3 T=0 and T=1 microprocessor cards.

12h Double speed mode (clock frequency = 7.3728 Mhz) ISO
7816-3 T=0 and T=1 microprocessor cards.

03h GPM256

04h GPM416/GPM896 in Standard Mode

14h GPM416/GPM896 in Personalization Mode

06h GFM2K/GFM4K

07h GPM103

08h GPM8K(SLE4418/4428)

09h GPM2K(SLE4432/4442 or PCB2032/2042)

10h GAM144

If the command is entered with a family number that is different from that of the
current card, the current card is powered down. You can also use this command to
modify the voltage without changing the card type in use by entering the same card
code as that in use.

S

GCC Format

ROS Format

Result

INTERFACE COMMANDS

 GEMPLUS 22

CARD STATUS

Sends the above command to know the smart card interface or the security
module’s status. It returns information relating to:

• card type in use

• card presence

• power supply value

• powered up card

• communication protocol (T=0, T=1)

• speed parameters between card and GemCore ChipSet

17h Card #0

1Fh Card #1

S STAT TYPE CNF1 CNF2 CNF3 CNF4

where

STAT: NNNNXXXX Card number

0000XXXX=Card#0

0001XXXX=Card#1

XXXXXXX0 power supply = 5V

XXXXXXX1 power supply = 3V

XXXXXX0X card not powered

XXXXXX1X card powered

XXXXX0XX card not inserted

XXXXX1XX card inserted

XXXX0XXX protocol T=0

XXXX1XXX protocol T=1

TYPE: Activated Card type

CNF1

CNF2

CNF3

CNF4

CNF1=TA1 (FI/DI)

CNF2=TC1 (EGT)

CNF3=WI

CNF4=00

T=0 Card according to ISO 7816/3

GCC Format

Result

INTERFACE COMMANDS

 GEMPLUS 23

CNF1

CNF2

CNF3

CNF4

CNF1=TA1 (FI/DI)

CNF2=TC1 (EGT)

CNF3=IFSC

CNF4=TB3 (BWI/CWI)

T=1 Card according to ISO 7816/3

CNF1

CNF2

CNF3

CNF4

CNF1=00

CNF2=00

CNF3=00

CNF4=00

Synchronous Smart Cards

 GEMPLUS 24

USING THE GEMCORE CHIPSET CONTROLLER
WITH MICROPROCESSOR CARDS

The GemCore ChipSet Controller supports ISO 7816-3 T=0 and T=1 protocol
microprocessor cards. The following section describes the implementation of these
standards.

The GemCore ChipSet Controller can transmit one of two clock frequency values to
the card, depending on the previously selected operating mode:

• 3.6864 Mhz for the standard mode (ISO compliance)

• 7.3728 Mhz for the double speed mode (above the ISO range for cards that can
operate at this frequency)

You specify the operating mode while selecting the card type using the DEFINE
CARD TYPE command. Select card type 02h for the standard mode and card type
12h for the double speed mode.

These parameters are returned by the microprocessor card during the Answer to
Reset. For more information on these parameters please refer to the ISO 7816-3
standard document.

The GemCore ChipSet Controller interprets this parameter to match its
communication rate with that of the card, based on the clock rate conversion factor
F. F is coded on the most significant nibble and the bit rate adjustment factor D, is
coded on the least significant nibble.

The initial communication rate used during the Answer to Reset is 9909.68 baud in
the standard mode and 19819.35 baud in the double speed mode.

After it receives the Answer to Reset, the GemCore ChipSet Controller installs the
communication rate depending on TA1. Table 1 and Table 2 below show the clock
rate conversion factors, the bit rate conversion factors, and the baud rates installed
in relation to the TA1 values for standard mode and double speed mode cards.

Note: The GemCore ChipSet Controller only supports the TA1 shaded values in
Tables 1 and 2.

The Vpp option is not available on the GemCore ChipSet Controller. TB1 and
TB2 parameters are ignored and the Vpp default value is set to 5V.

Clock Signal

Global Interface
Parameters

TA1 Parameter

TB1 and TB2

USING THE GEMCORE CHIPSET CONTROLLER WITH MICROPROCESSOR CARDS

 GEMPLUS 25

This parameter defines the extra guardtime N, required by the card. This parameter
is processed when sending characters to the card, to ensure a delay of at least
(12+N) etu between two characters.

Table 1. Supported TA1 values in standard mode (clock frequency = 3.6864 Mhz)

D= 1 2 4 8 16

F= TA1 Rate (bd) TA1 Rate (bd) TA1 Rate (bd) TA1 Rate (bd) TA1 Rate (bd)

372 11 9 909.68 12 19 819.35 13 39 638.71 14 79 277.42 15 158 554.84

558 21 - 22 13 212.90 23 26 425.81 24 52 851.61 25 105 703.23

744 31 - 32 9 909.68 33 19 819.35 34 39 638.71 35 79 277.42

1116 41 - 42 - 43 13 212.90 44 26 425.81 45 52 851.61

1488 51 - 52 - 53 9 909.68 54 19 819.35 55 39 638.71

1860 61 - 62 - 63 - 64 15 855.48 65 31 710.97

512 91 - 92 14 400.00 93 28 800.00 94 57 600.00 95 115 200.00

768 A1 - A2 - A3 19 200.00 A4 38 400.00 A5 76 800.00

1024 B1 - B2 - B3 14 400.00 B4 28 800.00 B5 57 600.00

1536 C1 - C2 - C3 - C4 19 200.00 C5 38 400.00

2048 D1 - D2 - D3 - D4 14 400.00 D5 28 800.00

Table 2. Supported TA1 values for double speed mode (clock frequency = 7.3728 Mhz)

D= 1 2 4 8 16

F= TA1 Rate (bd) TA1 Rate (bd) TA1 Rate (bd) TA1 Rate (bd) TA1 Rate (bd)

372 11 19819.35 12 39 638.71 13 79 277.42 14 158 554.84 15 -

558 21 13 212.90 22 26 425.81 23 52 851.61 24 105 703.23 25 -

744 31 9 909.68 32 19 819.35 33 39 638.71 34 79 277.42 35 -

1116 41 - 42 13 212.90 43 26 425.81 44 52 851.61 45 -

1488 51 - 52 9 909.68 53 19 819.35 54 39 638.71 55 -

1860 61 - 62 - 63 15 855.48 64 31 710.97 65 -

512 91 14 400.00 92 28 800.00 93 57 600.00 94 115 200.00 95 -

768 A1 - A2 19 200.00 A3 38 400.00 A4 76 800.00 A5 -

1024 B1 - B2 14 400.00 B3 28 800.00 B4 57 600.00 B5 -

1536 C1 - C2 - C3 19 200.00 C4 38 400.00 C5 -

2048 D1 - D2 - D3 14 400.00 D4 28 800.00 D5 -

TC1

USING THE GEMCORE CHIPSET CONTROLLER WITH MICROPROCESSOR CARDS

 GEMPLUS 26

The least significant nibble of the TD1 parameter in the Answer to Reset defines
the protocol (T=0 or T=1) to be used by the GemCore ChipSet, according to the
following table:

This value: Selects this protocol:

0 T=0

1 T=1

If the GemCore ChipSet does not receive a TD1 value, it defaults to the T=0
protocol.

The TC2 specific interface parameter is interpreted to set the value of the work
waiting time, W. When this parameter is absent , a maximum of 960xD etu
elapsed before timing-out on a character sent by the card takes place. Otherwise
there is a maximum of 960xDxW before timing-out.

To send instructions to a T=0 microprocessor card, you use the ISO Input and ISO
Output commands.

To send instructions to a T=1 microprocessor card, you use the Exchange APDU
command. The T=1 specific interface bytes are interpreted according to clause 9 of
the ISO 7816-3 standard. These bytes are TA3, TB3, TC3.

TA3 codes the Information Field Size of the card (IFSC). The default value is 32
bytes.

TB3 codes the BWI (Block Writing Time Integer) and CWI (Character Waiting
Time Integer).

TC3 defines the Error Detection Code (EDC) type.

Communication
Protocols

T=0 Protocol

T=1 Protocol

 GEMPLUS 27

USING THE GEMCORE CHIPSET CONTROLLER
WITH MEMORY CARDS

Memory cards cannot interpret smart card instructions in the same way as ISO
7816-3 microprocessor cards can. Therefore T=0 are formatted instructions are
interpreted and converted into the appropriate timing sequences required to control
the memory cards listed in the table below.

For further details, refer to the relevant card documentation.

You send these instructions to the GemCore ChipSet, using the ISO Input and ISO
Output commands

Memory Card Command Summary

 ISO Input/ISO Output Command Parameters (CLA = 00)

Card Type Command Name INS A1 A2 Ln

GPM256 Write Bytes D0 00 Start
Address

Write Length

Read Bytes B0 00 Start
Address

Read Length

GPM103 Write Bytes D0 00 Start
Address

Write Length

Erase and Write
Carry

DE 01 Counter to
erase

0

Write New value to
Counter

D2 05 08 02

Read Bytes B0 00 Start
Address

Read Length

Read Counter
Value

B2 05 08 02

Continued on following page

USING THE GEMCORE CHIPSET CONTROLLER WITH MEMORY CARDS

 GEMPLUS 28

Memory Card Command Summary (continued)

ISO Input/ISO Output Command Parameters (CLA = 00)

Card Type Command Name INS A1 A2 Ln

GPM896 Write Bytes D0 00 Start
Address

Write Length

Erase Word DE Number of words Start
Address

00

Present Erase
Code1

20 00 36 06

Present Erase
Code2

20 80 5C 04

Present Card Secret
Code

20 04 0A 02

Present Secret Code 20 Number of bits in
error counter

Start
Address

Code Length

Read B0 00 Start
Address

Read Length

GPM416 Write Bytes D0 00 Start
Address

Write Length

Erase Word DE Number of words Start
Address

00

Present Erase Code 20 40 28 04

Present Card Secret
Code

20 04 08 02

Read B0 00 Start
Address

Read Length

GAM144 Write Bytes D0 00 Start
Address

Write Length

Erase 0E 01 Start
Address

00

Write value D2 05 08 02

Restore D4 No. bytes to restore 08 00

Blow Fuse DA Fuse ID 1A 00

Authenticate 88 12 19 00

Read Bytes B0 00 Start
Address

Read Length

Read Counter
Value

B2 05 08 02

Get Result C0 00 00 01

Continued on following page

USING THE GEMCORE CHIPSET CONTROLLER WITH MEMORY CARDS

 GEMPLUS 29

Memory Card Command Summary (continued)

ISO Input/ISO Output Command Parameters (CLA = 00)

Card Type Command Name INS A1 A2 Ln

SLE4418/4428
GPM8K

Read Bytes B0 00 = Data memory Start
Address
Least
Significant
Nibble

Read Length

Write Bytes D0 00 = Data memory Start
Address
Least
Significant
Nibble

Write Length

Check Secret Code 20 00 00 02

SLE4432/4442
PCB2032/2042
GPM2K

Read Memory B0 Memory Area:
00=Data Memory
80=Data Protection
Area
C0=Security Area

Read Start
Address

Length of
Data to Read

Write Memory D0 Memory Area:
00=Data Memory
80=Data Protection
Area
C0=Security Area

Write Start
Address

Length of
Write Data

Check Secret Code 20 00 00 03

 GEMPLUS 30

APPENDIX A. STATUS CODES

The returned status codes are listed in the table below.

Code Meaning

01h Unknown driver or command.

02h Operation not possible with this driver.

03h Incorrect number of arguments.

04h GemCore ChipSet command unknown. The first byte of the command is not a valid
command code.

05h Response too long for the buffer.

09h Communication protocol error. The header of a message is neither ACK or NACK
(60h or E0h)

10h Response error at the card reset. The first byte of the response (TS) is not valid

11h ISO command header error. The byte INS in the ISO header is not valid (6x or 9x).

12h Message too long. The buffer is limited to 254 bytes, of which 248 bytes are for the
data exchanged with the card

13h Byte reading error returned by an asynchronous card.

15h Card turned off. A Power Up command must be applied to the card prior to any
other operation.

16h Programming voltage not available. The parameter V in the DEFINE CARD TYPE
command is not valid.

17h, 18h Communication protocol unknown or incorrectly initialized.

19h Illegal access to external bus.

1Ah Error in an ISO format card command. The parameter LN in the ISO header does
not correspond to the actual length of the data.

1Bh A command has been sent with an incorrect number of parameters.

1Dh The check byte TCK of the response to reset of a microprocessor card is incorrect.

1Eh An attempt has been made to write to external memory, which is write protected.

1Fh Incorrect data has been sent to the external memory. This error is returned after a
write check during a downloading operation.

A0h Error in the card reset response, such as unknown exchange protocol, or byte TA1
not recognized. The card is not supported. The card reset response is nevertheless
returned.

A1h Card protocol error (T=0/T=1).

A2h Card malfunction. The card does not respond to the reset or has interrupted an
exchange (by time-out).

A3h Parity error (in the course of an exchange microprocessor). The error only occurs
after several unsuccessful attempts at re transmission.

APPENDIX A. STATUS CODES

 GEMPLUS 31

A4h Card has aborted chaining (T=1).

A5h GemCore chipset has aborted chaining (T=1).

A6h Protocol type Selection (PTS) error.

CFh Overkey already pressed.

E4h The card has just sent an invalid "Procedure Byte" (see ISO 7816-3).

E5h The card has interrupted an exchange (the card sends an SW1 byte but more data
has to be sent or received).

E7h Error returned by the card. The bytes SW1 and SW2 returned by the card are
different from 90h 00.

F7h Card removed. The card has been withdrawn in the course of carrying out of a
command. Check that the card instruction is not partially completed.

F8h The card is consuming too much electricity or is short circuiting.

FBh Card absent. There is no card in the smart card interface. The card may have been
removed when it was powered up, but no command has been interrupted.

 GEMPLUS 32

APPENDIX B. INTERPRETED SYNCHRONOUS
SMART CARD DRIVER

This command is used to handle synchronous card protocols which are not
supported by GemCore. The protocol to be used is defined by parameters specified
in 8051 assembler code.

The 8051 assembler (INTEL ASM51) generates the commands to be executed and
the GemCore software interprets the bytes as 8051 operation codes.

The GemCore interpreter can execute most 8051 instructions along with a few
macro commands dedicated to synchronous cards.

16h CLA INS A1 A2 Lin <DATA IN> Lout Lcode <CODE>

where:

CLA, INS, A1, A2 are the command parameters.
Lin is the number of bytes present in the DATA IN field.
DATA IN is the data to be sent to the card.
Lout is the length of the expected response.
Lcode is the number of bytes present in the CODE field.
CODE is the 8051 executable code.

S <data byte>

The GemCore interpreter handles the following functions:

• An accumulator (A)

• Eight registers (R0 to R7)

• A carry (C)

• A program counter (PC)

All instructions concerning the IDATA or XDATA RAM memories, also have an
incidence on the XDATA memory. The XDATA memory starts at address 0000h
and ends at address 00FFh.

The instruction to be executed is registered in this memory area (command 16h).

Only relative jumps can be used.

Card Type 01h

Format

Result

8051 Interpreter

APPENDIX B. INTERPRETED SYNCHRONOUS SMART CARD DRIVER

 GEMPLUS 33

Upon reception of a 16h command, the interpreter registers are initialized as
follows:

PC points to the first <CODE> byte.
C = 0
A = CLA
R0 and R4 point to the address following the last <CODE>byte.
R1 points to the address of the first <DATA IN> byte.
R2 = Lin
R3 = Lout
R5 = INS
R6 = A1
R7 = A2

16h CLA=A INS=R5 A1=R6 A2=R7 Lin=R2 <DATAIN> Lout=R3 Lcode <CODE>
↑↑ R1 R0/R4 ↑↑

Before executing a 16h command, the software checks that a card is actually
present in the smart card connector.

If the card is missing the following error message will be returned: “CARD
ABSENT” (S = FBh).

As soon as the smart card is powered up, the GemCore card withdrawal
interruption is activated.

If the card is withdrawn, the interpreted program is interrupted, all contacts with
the smart card are deactivated and the following error message is returned :
“CARD WITHDRAWN” (S = F7h).

The card power up instructions check for short circuits between pins C1 (VCC) and
C5 (GND).

If a short circuit is detected, the following error message is returned : “TOO MUCH
CONSUMPTION” (S = F8h).

Initialization

Card Presence

Card Withdrawal

Short Circuit

APPENDIX B. INTERPRETED SYNCHRONOUS SMART CARD DRIVER

 GEMPLUS 34

The following table is used to obtain a hexadecimal instruction code. The line
number defines the four most significant bits and the column number defines the
least significant bits (e.g. INC A = 04h).

Note: The instructions in italics are macro-commands. See the "Macro-
Commands" section for more details.

Table 4. Hexadecimal instruction codes

1/12/23 means: instruction over one byte/12 µs min/23 µs max. (For the jump
instructions, the time taken is maximum when the jump is executed).

(*) Instruction already existing in the 8051 but with a different function for the
interpreter.

Instructions

0 1 2 3 4 5 6 7

0 NOP

1/12

VCC_OFF

1/

RR A

1/16

INC A

1/18

INC @R0

1/22

INC @R1

1/22

1 VCC_ON

1/

RESET

1/

RRC A

1/19

DEC A

1/18

DEC @R0

1/22

DEC @R1

1/22

2 CLR_RST

1/13

RET (*)

1/

RL A

1/14

ADD A,#data

2/21

ADD A,@R0

1/26

ADD A,@R1

1/26

3 SET_RST

1/13

RETI (*)

1/

RLC A

1/21

ADDC A,#data

2/24

ADDC A,@RO

1/29

ADDC A,@R1

1/29

4 JC rel

2/15/19

CLR_IO

1/13

RET_0K

1/

RDH_L

1/

ORL A,#data

2/17

ORL A,@R0

1/22

ORL A,@R1

1/22

5 JNC rel

2/15/20

SET_IO

1/13

RET_NOK

2/

RDH_R

1/

ANL A,#data

2/17

ANL A,@R0

1/22

ANL A,@R1

1/22

6 JZ rel

2/15/19

CLR_CLK

1/13

RET_ERR

3/

WRL_L

1/

XRL A,#data

2/17

XRL A,@R0

1/22

XRL A,@R1

1/22

7 JNZ rel

2/17/20

SET_CLK

1/13

CLK_INC

1/14/XXX

CLK_INC8

1/14/XXX

MOV A,#data

2/19

MOV @R0,
#data

1/27

MOV @R1,
#data

1/27

8 SJMP rel

2/16

CLR_C4

1/13

RDL_R

1/

RDL_L

1/

9 SET_C4

1/13

WRH_L

1/

WRH_R

1/

SUBB A,#data

2/

SUBB A,@R0

1/29

SUBB A,@R1

1/29

A CLR_C8

1/13

RST_PUL

1/24

WRL_R

B SET_C8

1/13

CLK_PUL

1/24

CPL C

1/14

CJNE
A,#data,rel

3/27/38

CJNE
@R0,#data,rel

3/33

CJNE
@R1,#data,rel

3/33

C SET_VPP

2/229

WAIT_US

20/5100

CLR C

1/14

SWAP A

1/15

XCH A,@R0

1/27

XCH A,@R1

1/27

D WAIT_MS

1ms/255ms

SETB C

1/14

XCHD A,@R0

1/25

XCHD A,@R1

1/25

E IO_TO_C

1/16

GET_D

1/1100/1s

GET_I

1/1100/1s

CLR A

1/14

MOV A,@R0

1/25

MOV A,@R1

1/25

F C_TO_IO

1/15

SEND_D

1/1100/1s

SEND_I

1/1100/1s

CPL A

1/14

MOV @R0,A

1/25

MOV @R1,A

1/25

APPENDIX B. INTERPRETED SYNCHRONOUS SMART CARD DRIVER

 GEMPLUS 35

Table 4. Hexadecimal instruction codes (continued)

1/12/23 means: instruction over one byte / 12 µs min / 23 µs max.

(*) Instruction already existing in the 8051 but with a different function for the
interpreter.

8 9 A B C D E F

0 INC R0

1 / 19

INC R1

1 / 19

INC R2

1 / 19

INC R3

1 / 19

INC R4

1 / 19

INC R5

1 / 19

INC R6

1 / 19

INC R7

1 / 19

1 DEC R0

1 / 19

DEC R1

1 / 19

DEC R2

1 / 19

DEC R3

1 / 19

DEC R4

1 / 19

DEC R5

1 / 19

DEC R6

1 / 19

DEC R7

1 / 19

2 ADD A,R0

1 / 24

ADD A,R1

1 / 24

ADD A,R2

1 / 24

ADD A,R3

1 / 24

ADD A,R4

1 / 24

ADD A,R5

1 / 24

ADD A,R6

1 / 24

ADD A,R7

1 / 24

3 ADDC A,R0

1 / 27

ADDC A,R1

1 / 27

ADDC A,R2

1 / 27

ADDC A,R3

1 / 27

ADDC

A,R4

1 / 27

ADDC A,R5

1 / 27

ADDC

A,R6

1 / 27

ADDC A,R7

1 / 27

4 ORL A,R0

1 / 20

ORL A,R1

1 / 20

ORL A,R2

1 / 20

ORL A,R3

1 / 20

ORL A,R4

1 / 20

ORL A,R5

1 / 20

ORL A,R6

1 / 20

ORL A,R7

1 / 20

5 ANL A,R0

1 / 20

ANL A,R1

1 / 20

ANL A,R2

1 / 20

ANL A,R3

1 / 20

ANL A,R4

1 / 20

ANL A,R5

1 / 20

ANL A,R6

1 / 20

ANL A,R7

1 / 20

6 XRL A,R0

1 / 20

XRL A,R1

1 / 20

XRL A,R2

1 / 20

XRL A,R3

1 / 20

XRL A,R4

1 / 20

XRL A,R5

1 / 20

XRL A,R6

1 / 20

XRL A,R7

1 / 20

7 MOV R0,#data

2 / 22

MOV R1,#data

2 / 22

MOV R2,#data

2 / 22

MOV R3,#data

2 / 22

MOV R4,#data

2 / 22

MOV R5,#data

2 / 22

MOV R6,#data

2 / 22

MOV R7,#data

2 / 22

8 - - - - - - - -

9 SUBB A,R0

1 / 26

SUBB A,R1

1 / 26

SUBB A,R2

1 / 26

SUBB A,R3

1 / 26

SUBB A,R4

1 / 26

SUBB A,R5

1 / 26

SUBB A,R6

1 / 26

SUBB A,R7

1 / 26

A - - - - - - - -

B CJNE R0,
#data, rel

3 / 32 / 43

CJNE R1,
#data, rel

3 / 32/ 43

CJNE R2,
#data, rel

3 / 32 / 43

CJNE R3,
#data, rel

3 / 32 / 43

CJNE R4,
#data, rel

3 / 32 / 43

CJNE R5,
#data, rel

3 / 32 / 43

CJNE R6,
#data, rel

3 / 32 / 43

CJNE R7,
#data, rel

3 / 32 / 43

C XCH A,R0

1 / 21

XCH A,R1

1 / 21

XCH A,R2

1 / 21

XCH A,R3

1 / 21

XCH A,R4

1 / 21

XCH A,R5

1 / 21

XCH A,R6

1 / 21

XCH A,R7

1 / 21

D DJNZ R0,rel

2 / 24 / 28

DJNZ R1,rel

2 / 24 / 28

DJNZ R2,rel

2 / 24 / 28

DJNZ R3,rel

2 / 24 / 28

DJNZ R4,rel

2 / 24 / 28

DJNZ R5,rel

2 / 24 / 28

DJNZ R6,rel

2 / 24 / 28

DJNZ R7,rel

2 / 24 / 28

E MOV A,R0

1 / 20

MOV A,R1

1 / 20

MOV A,R2

1 / 20

MOV A,R3

1 / 20

MOV A,R4

1 / 20

MOV A,R5

1 / 20

MOV A,R6

1 / 20

MOV A,R7

1 / 20

F MOV R0,A

1 / 19

MOV R1,A

1 / 19

MOV R2,A

1 / 19

MOV R3,A

1 / 19

MOV R4,A

1 / 19

MOV R5,A

1 / 19

MOV R6,A

1 / 19

MOV R7,A

1 / 19

APPENDIX B. INTERPRETED SYNCHRONOUS SMART CARD DRIVER

 GEMPLUS 36

When the interpreter finds the RET code, the program is ended. GemCore returns
the XDATA RAM memory data, R4 pointing to the first byte to be returned and R0
to the byte following the last response byte.

When the interpreter finds the RETI code, the program is ended. GemCore returns
the contents of the registers in the following order:
PC A R0 R1 R2 R3 R4 R5 R6 R7 C
This instruction is used for software development.

When the interpreter finds the RET_OK code, the program is ended. GemCore
returns the last contents of the XDATA RAM memory, R4 pointing to the first byte
to be returned and R0 to the byte following the last response byte.
S = 00h and the two status bytes SW1 = 90h and SW2 = 00H are added at the end
of the message.

When the interpreter finds the RET_NOK instruction, the program is ended.
GemCore returns the last contents of the XDATA RAM memory, R4 pointing to
the first byte to be returned and R0 to the byte following the last response byte.
S = E7h, SW1 = 92h and SW2 returns an error code. These two bytes are added at
the end of the message.

Same as %RET_NOK but with SW1 = ERR1 and SW2 = ERR2.

This command powers down all the smart card contacts as per ISO 7816-3 standard
specifications.

This command initializes the smart card contacts.
If a card is present and is not short circuited, the following steps are carried out:

• VCC contact set at 5V.

• VPP contact set at 5V.

• RESET contact set to level 0.

• CLOCK contact set to level 0.

• I/O contact set to level 1 (high impedance).

• C4 contact set to level 0.

• C8 contact set to level 0.

This instruction sets the smart card's RESET contact to 0.

This instruction sets the smart card's RESET contact to 1. It is only operative if the
smart card is powered up.

This instruction sets the smart card's I/O contact to 0.

This instruction sets the smart card's I/O contact to 1. It is only operative if the
smart card is powered up.

This instruction sets the smart card's CLOCK contact to 0.

Modified
Instructions

RET

RETI

Macro-
Commands

%RET_OK

%RET_NOK
(ERROR)

%RET_ERR
(ERR1,ERR2)

%VCC_OFF

%VCC_ON

%CLR_RST

%SET_RST

%CLR_IO

%SET_IO

%CLR_CLK

APPENDIX B. INTERPRETED SYNCHRONOUS SMART CARD DRIVER

 GEMPLUS 37

This instruction sets the smart card's CLOCK contact to 1. It is only operative if the
smart card is powered up.

This instruction sets the smart card's C4 contact to 0.

This instruction sets the smart card's C4 contact to 1. It is only operative if the
smart card is powered up.

This instruction sets the smart card's C8 contact to 0.

This instruction sets the smart card's C8 contact to 1. It is only operative if the
smart card is powered up.

This instruction sets the smart card's VPP contact to the voltage specified in the
VALUE parameter and waits for 200 µs (VPP rise time). It is only operative if the
smart card is powered up.

Note: The VPP voltage value is coded in VALUE in 0.1V steps.

This instruction copies the state of the I/O contact into the C bit.

This instruction copies the level held in C to the smart card's I/O contact. It is only
operative if the smart card is powered up.

This instruction allows pulses to be generated on CLK. The total number of packets
is indicated in A (0 to 255).
CLK is set to 0 for 10 ms then to 1 for 10 ms. At the end of the sequence, CLK is
set to 0.

This instruction allows eight pulse packets to be generated on CLK. The total
number of packets is indicated in A (0 to 255).
CLK is set to 0 for 10 ms then to 1 for 10 ms. At the end of the sequence, CLK is
set to 0.

When the 3.68 MHz asynchronous clock is activated on CLK, this command reads
eight bits from the I/O in asynchronous mode and classes them in A using the
direct convention.
The configuration is 9,600 baud, 8 bits, even parity, 1 stop bit, 1s time-out.

Same as GET_D, but the eight bits read are classed in A using the inverse
convention.

When the 3.68 MHz asynchronous clock is activated on CLK, this command writes
the contents of A on the I/O in asynchronous mode using the direct convention.
The configuration is 9,600 baud, 8 bits, even parity, 1 stop bit, 1s time-out.

Same as SEND_D, but the eight bits are written to the I/O using the inverse
convention.

%SET_CLK

%CLR_C4

%SET_C4

%CLR_C8

%SET_C8

%SET_VPP
(VALUE)

%IO_TO_C

%C_TO_IO

%CLK_INC

%CLK_INC8

%GET_D

%GET_I

%SEND_D

%SEND_I

APPENDIX B. INTERPRETED SYNCHRONOUS SMART CARD DRIVER

 GEMPLUS 38

This command reads eight bits and classes them in A with a right rotation.

This command is the same as RDL_R but with a left rotation

The sequence for these two commands is as follows:

CLK

b0 b1 b2 b3 b4 b5 b6 b7

I/O

%RDL_R

%RDL_L b7 b0b1b2b3b4b5b6

- CLK contact set to 0 for 10 µs.
- CLK contact set to 1 for 10 µs.

The I/O line is read 5µs before the CLK rising edge.

This command reads eight bits and classes them in A, with a right rotation.

This command is the same as RDH_R but with a left rotation

The sequence for these two commands is as follows:

CLK

I/O

b0 b1 b2 b3 b4 b5 b6 b7%RDH_R

b7 b6 b5 b4 b3 b2 b1 b0%RDH_L

- CLK contact set to 0 for 10 µs.
- CLK contact set to 1 for 10 µs.

The I/O line is read 5µs after the rising edge of the clock.
The first bit to be read is b0 of A. The last bit to be read is b7 of A.
At the end of the command, CLK is set to level 0.

%RDL_R

%RDL_L

%RDH_R

%RDH_L

APPENDIX B. INTERPRETED SYNCHRONOUS SMART CARD DRIVER

 GEMPLUS 39

This command writes the contents of A on the I/O contact, with a right rotation.

This command is the same as WRH_R but with a left rotation (bit b7 of A is the
first bit to be sent and bit b0 is the last).

The sequence for these two commands is as follows:

CLK

I/O

b0 b1 b2 b3 b4 b5 b6 b7%WRH_R

b7 b6 b5 b4 b3 b2 b1 b0%WRH_L

- CLK contact set to 0 for 10 µs.
- CLK contact set to 1 for 10 µs

The bit to be sent on I/O is set 5 µs before the rising edge of CLK.
Bit b0 of A is the first bit to be sent and bit b7 the last.
At the end of the command, CLK is set to level 0 and the I/O line is set to a high
impedance level.

This command writes the contents of A on the I/O contact, with a right rotation.

Same as WRL_R but with a left rotation (b7 of A is the first bit to be sent and bit b0
is the last).

The sequence for these two commands is as follows:

CLK

I/O

b0 b1 b2 b3 b4 b5 b6 b7%WRL_R

b7 b6 b5 b4 b3 b2 b1 b0%WRL_L

- CLK contact set to 0 for 10 µs.
- CLK contact set to 1 for 10 µs.

The bit to be sent on I/O is set 5 µs before the falling edge of CLK.
Bit b0 of A is the first bit to be sent and b7 the last.
At the end of the command, CLK is set to level 0 and the I/O line is set to a high
impedance level.

This command generates a logical pulse 1 for 10 µs on the RESET line and then
resets the line to level 0.

This command generates a logical pulse 1 for 10 µs on the CLK line and then
resets the line level to 0.

This command waits for the length of time specified in the TIME parameter.
The waiting time equals TIME * 10 µs.

%WRH_R

%WRH_L

%WRL_R

%WRL_L

%RST_PUL

%CLK_PUL

%WAIT_US
(TIME)

APPENDIX B. INTERPRETED SYNCHRONOUS SMART CARD DRIVER

 GEMPLUS 40

This command waits for the length of time specified in the TIME parameter.
The waiting time equals TIME* 1ms.

This command executes the RESET synchronous card sequence with the
GPM2K/8K protocol. GemCore returns the 32 bit ATR.
Executing the command interrupts the current program.

RST

CLK

I/0

b0 b1 b31b30b29

The RST and CLK signals are forced to level 0 for 10µs.
The CLK signal rises 5µs after the RST rising edge and remains at 1 for 40µs.
The RST signal falls 5µs after CLK and remains at 0 until the end of the sequence.
The CLK high and low levels remain constant for 10µs while the ATR is read, and
the data is read 5µs after the rising edge of the CLK.
b0 is the least significant bit of the first byte returned by GemCore, b7 being the
most significant bit.
b8 is the least significant bit of the second byte returned by GemCore, b15 being the
most significant bit.
b16 is the least significant bit of the third byte returned by GemCore, b23 being the
most significant bit.
b24 is the least significant bit of the third byte returned by GemCore, b31 being the
most significant bit.

%WAIT_MS
(TIME)

%RESET

APPENDIX B. INTERPRETED SYNCHRONOUS SMART CARD DRIVER

 GEMPLUS 41

Interpreted GPM256 source code:

;Initialization:
;CLA, INS, A1: not used
;A2 = R7: location of first byte to be read
;Lout = R3: number of byte to read

81 %CLR_C4 ;
71 %SET_CLK ;Clears the internal counter
61 %CLR_CLK ;

91 %SET_C4 ;
EF MOV A,R7 ;Selects the first byte to be read
73 %CLK_INC8 ;

82 READ:RDL_BYTE ;Reads one byte

F6 MOV@R0, A ;Puts the byte in the output buffer
08 INC R0 ;
DB FB DJNZR3, READ ;Reads the next byte

42 %RET_OK ;Returns the result and adds 90h 00h when
;all the bytes are read

16h CLA INS A1 A2 Lin <DATA IN> Lout Lcode <CODE>

CLA = 00h not used.
INS = B0h not used. Only for card driver compatibility.
A1 = 00h not used.
A2 = XXh location of the first byte to be read.
Lin = 00h no byte to be sent to the card.
DATA IN not used, empty field.
Lout = YYh number of bytes to be read.
Lcode = 0Ch number of bytes in the code
CODE = 81h 71h 61h 91h EFh 73h 82h F6h 08h DBh FBh 42h

Command:

16h 00h B0h 00h XXh 00h YYh 0Ch 81h 71h 61h 91h EFh 73h
82h F6h 08h DBh FBh 42h

Response:

S <YY bytes DATA READ> 90h 00h

Example

GPM256 Read
Command

Formatted
GemCore
Command

At press time, this guide is as thorough and correct as possible; however, information

herein contained may have been updated after this date.

GEMPLUS reserves the right to change the functions and specifications of itsproducts at

any time without prior notice.

This document was prepared by GEMPLUS for both its clients and for its owninternal use.

Information herein contained is the sole property of GEMPLUS and shall not under any

circumstances be reproduced without prior consent of the company.

© Copyright GEMPLUS, 1998.

Smart Cards and Smart Card readers are patent protected by INNOVATRON and Bull CP8

and are produced by GEMPLUS under license.

MS-DOS® and Windows® are registered trademarks of Microsoft Corporation Patented

by Bull CP8 - Patented by Innovatron.

Printed in France.

GEMPLUS, B.P. 100, 13881 GEMENOS CEDEX, FRANCE.

Tel: +33 (0)4.42.36.50.00 Fax: +33 (0)4.42.36.50.90

Document Reference : E5221031/DPD04611B00

