# GemCore ChipSet Controller Software

Version 2.0

# GEMPLUS

February, 1998

# **ABOUT THIS DOCUMENT**

|                                                    | This document provides information about the GemCore ChipSet Controller<br>software. You will find a detailed description of the GemCore ChipSet hardware in<br>the GemCore Technical Specifications.        |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Audience                                           | This document is to be used by anyone wishing to build electronic system implementing the use of a Smart Card Interface.                                                                                     |
| How to Use This<br>Guide                           | The following paragraphs tell you where to find information when you need it. It is important that you read this section in order to use this document to its full potential.                                |
| Overview                                           | Read the Overview for an overall description of the GemCore ChipSet Controller.                                                                                                                              |
| The GCC<br>Protocols                               | Read this section for a description of the existing protocols between the GemCore<br>ChipSet Controller and the host system.                                                                                 |
| The GCC<br>Interface<br>Commands                   | Read the GCC Interface Commands section for a description of the GemCore<br>ChipSet Controller commands, the functions they perform, their syntax and the<br>format you send them in to the GemCore ChipSet. |
| Using the GCC<br>with<br>Microprocessor<br>Cards   | The GemCore ChipSet Controller supports ISO 7816-3 T=0 and the T=1 protocol microprocessor cards. Read this section for a description of these standards.                                                    |
| Using the GCC<br>with Memory<br>Cards              | Read this section for a summary of a all the commands used with memory cards.                                                                                                                                |
| Status Codes                                       | The status codes returned by the GemCore ChipSet Controller are listed in this section.                                                                                                                      |
| Interpreted<br>Synchronous<br>Smart Card<br>Driver | This section describes the instructions and macro commands dedicated to<br>synchronous cards handled by the GemCore interpreter                                                                              |

# CONTENTS

| ABOUT THIS DOCUMENT                                       | i  |
|-----------------------------------------------------------|----|
| Audience                                                  | i  |
| How To Use This Document                                  | i  |
| OVERVIEW                                                  | 1  |
| GEMCORE CHIPSET PROTOCOLS                                 | 2  |
| Command Layer                                             | 3  |
| Transport Layer                                           | 4  |
| TLP224                                                    | 4  |
| GEMPLUS Block Protocol                                    | 5  |
| Physical Layer                                            | 7  |
| Serial Asynchronous Protocol                              | 7  |
| GEMCORE CHIPSET CONTROLLER INTERFACE COMMANDS             | 8  |
| Command Format                                            | 8  |
| Configuration GemCore ChipSet Controller Commands         | 9  |
| Card Interface Command Set                                | 13 |
| APDU Format                                               | 19 |
| Command Format                                            | 19 |
| USING THE GEMCORE CHIPSET CONTROLLER                      |    |
| WITH MICROPROCESSOR CARDS                                 |    |
| Clock Signal                                              |    |
| Global Interface Parameters                               |    |
| TA1 Parameter                                             |    |
| TB1 and TB2                                               |    |
| TC1                                                       |    |
| Communication Protocols                                   |    |
| T=0 Protocol                                              |    |
| T=1 Protocol                                              |    |
| USING THE GEMCORE CHIPSET CONTROLLER<br>WITH MEMORY CARDS | 27 |
| APPENDIX A. STATUS CODES                                  | 30 |
| APPENDIX B. INTERPRETED                                   |    |
| SYNCHRONOUS SMART CARD DRIVER                             | 32 |

## **OVERVIEW**

The present document describes the interface between your application and the GemCore ChipSet Controller.

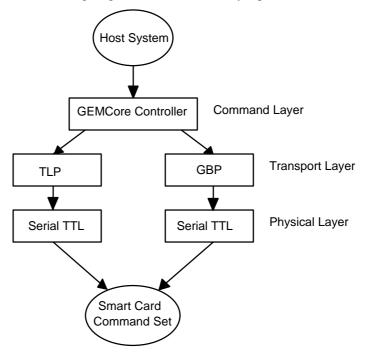
Composed of one programmed controller and one smart card interface chip -the **GEMPLUS IC100-** the GemCore ChipSet is designed to simplify the integration of Smart Card interface to electronic devices and manages the communication with ISO 7816 1/2/3/4 compatible smart card.

The software inside the controller is compatible with the GEMPLUS Readers Operating System (OROS). It includes the communication protocols with the host system (GBP or TLP protocol) as well as the protocols with synchronous and asynchronous smart cards.

The connection with the host system is done with a serial asynchronous port in TTL level.

# **GEMCORE CHIPSET PROTOCOLS**

All transmissions with the GemCore ChipSet are handled by three protocol layers:


- the command layer
- the transport layer
- the physical layer

The command layer handles and interprets the GemCore ChipSet commands. It consists of the command code, data, and parameters.

The transport layer handles the message addressing, specifies the transmission type, and validates each transmission. The transport layer can use one of two protocols: the TLP224 protocol and the GEMPLUS Block Protocol.

The physical layer handles the data transmission itself. The physical layer uses the Serial TTL protocol.

The following diagram shows the three-layer protocol.



The following paragraphs describe the protocol layers in more details.

# **Command Layer** The command layer handles and interprets the GemCore ChipSet commands. It consists of the command code, data, and parameters.

You send commands in the following format:

|CommCode|Parameters|Data|

where:

| miler e.   |                                                          |
|------------|----------------------------------------------------------|
| CommCode   | is the command code.                                     |
| Parameters | are the parameters sent with the command.                |
| Data       | is the data accompanying the command, where appropriate. |

The GemCore ChipSet Interface Commands section describes the CommCode, Parameters, and Data field values for each command.

The GCC replies to every command it receives with a status code formatted as follows:

|S|Data|

where:

| S    | Status code identifier.                                |
|------|--------------------------------------------------------|
| Data | Data returned with the status code, where appropriate. |

# **Transport Layer** The transport layer handles the message addressing, specifies the transmission type, and validates each transmission. The GCC transport layer can use one of two protocols: the TLP224 protocol and the GEMPLUS Block Protocol. The following paragraphs describe these.

**TLP224** The TLP protocol processing consists of two steps. The first step is to construct the message to be transmitted. Under the TLP224 protocol, the exchange transmissions have the following format:

### For messages transmitted without error:

| <ack><ln><message><lrc></lrc></message></ln></ack> |                                                                                         |  |  |  |
|----------------------------------------------------|-----------------------------------------------------------------------------------------|--|--|--|
| where:                                             |                                                                                         |  |  |  |
| ACK                                                | 60h, indicating that the previous command or status code was transmitted without error. |  |  |  |
| LN                                                 | Length of the message (command or status code)                                          |  |  |  |
| MESSAGE                                            | Command or status code.                                                                 |  |  |  |
| LRC                                                | The result of an EXCLUSIVE OR (XOR) between the characters ACK, LN, and MESSAGE.        |  |  |  |

## When an error is detected in the transmission:

<NACK><LN><LRC>

| where: |                                                                    |
|--------|--------------------------------------------------------------------|
| NACK   | E0h, indicating that there was an error in a message transmission. |
| LN     | 00                                                                 |
| LRC    | E0                                                                 |

During the second step the source performs the following processing:

- converts each byte to be transmitted into two ASCII characters. For example, to transmit the byte 3Ah, the source would transmit the values 33h and 41h. This prevents other equipment from interpreting the control characters.
- adds an End Of Transmission (EOT) byte to the end of the transmission. This has the value 03h.

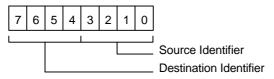
For example, to transmit the power down command under the TLP224 protocol, which has the command code 4Dh and no parameter, the following sequence would be transmitted:

|                              | ACK   | LEN   | Message | LRC   | EOT |
|------------------------------|-------|-------|---------|-------|-----|
| Command                      | 60    | 01    | 4D      | 2C    |     |
| TLP Protocol<br>Transmission | 36 30 | 30 31 | 34 44   | 32 43 | 03  |

The time-out between each character is 100 ms.

## GEMPLUS Block Protocol

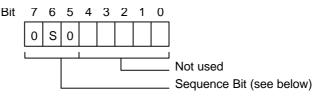
The GEMPLUS Block Protocol (GBP) is a simplified version of the T=1 card protocol. Under the GBP, data is transmitted in blocks between the source and the destination. There are three types of blocks:


- I-Blocks. (Information Blocks). I-Blocks hold the data to be exchanged between the source and the destination.
- R-Blocks (Receive Ready Block). R-Blocks hold positive or negative acknowledgments to transmissions.
- S-Blocks (Supervisory Block). S-Blocks synchronize transmissions between the source and the destinations.

Data is exchanged in the following format:

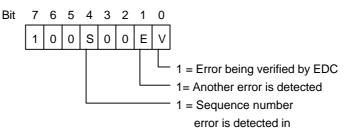
| NAD | PCB | LEN | DAT | EDC |
|-----|-----|-----|-----|-----|
|-----|-----|-----|-----|-----|

where:


NAD is the source and the destination identifier formatted as follows on one byte:



The GemCore ChipSet identifier is 4 and the host system identifier is 2.


PCB identifies the block type. Its format depends on the block type, as described below:

#### I-Block PCBs have the following format:



The sequence bit is zeroized on power up. The source sends the first I-Block that it transmits with the sequence bit set to 0. It increments the sequence bit by 1 each time it sends an information block. The GemCore ChipSet Controller and the host system generate sequence bit values independently.

**R-Block PCBs have the following format:** 



S-Blocks request the destination to zeroize the sequence bits and return a response to the source; this response indicates that the response is fulfilled.

#### S-Block PCBs have the following format:

| Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |                 |
|-----|---|---|---|---|---|---|---|---|-----------------|
|     | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | Resynch request |
| Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |                 |

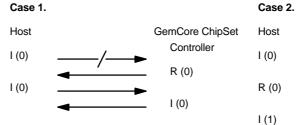
0 0 0 0 Resynch response

LEN specifies, on one byte, the number of bytes in the INF field (see below).

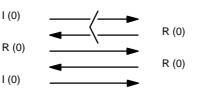
DAT holds the data being transmitted.

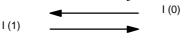
EDC is the result of an exclusive OR performed on the NAD, PCB, LEN, and DAT bytes.

The following examples show some transmission types under the GBP protocol.

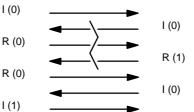

## Examples

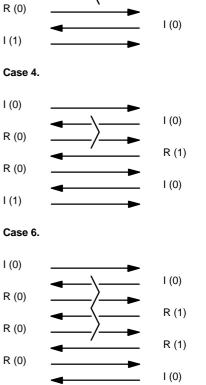
#### **Transmission without error:**


1 1 1 0




## Transmission with error:














I (1)

GemCore ChipSet

Controller

I (0)

## **Physical Layer**

Asynchronous

Serial

Protocol

The physical layer handles the data transmission itself. The physical layer uses the Serial protocol.

The Serial Asynchronous Protocol can be sent directly on the serial line.

The bytes are sent over the line by an UART whose transmission characteristics (such as speed and parity) are determined by the configuration of the GemCore ChipSet Controller.

The default configuration is 9600 baud, 8 bits, no parity and 1 stop bit.

## GEMCORE CHIPSET CONTROLLER INTERFACE COMMANDS

This section describes the GemCore ChipSet Controller commands. For each command it describes:

- the functions it performs
- its syntax
- the data it returns

The commands are grouped into command sets. The GemCore ChipSet Controller command sets are:

- Configuration
- Card interface #0
- Card interface #1

The rest of this section describes the GemCore ChipSet Controller commands.

## Command Format

You send commands to the GemCore ChipSet in the following format:

| CommCode | Parameters | Data |
|----------|------------|------|
|----------|------------|------|

where:

| CommCode   | is the command code.                        |
|------------|---------------------------------------------|
| Parameters | are the parameters sent with the command.   |
| Data       | is the data accompanying the command, where |
|            | appropriate.                                |

The GemCore ChipSet commands section describes the CommCode, Parameters, and Data field values for each command.

The GemCore ChipSet replies to every command it receives with a status code formatted as follows:

|S|Data|

where:

SStatus code identifier.DataData returned with the status code, where appropriate.Appendix A lists the status codes and their meanings.

## Configuration GemCore ChipSet Controller Commands

The following pages describe the GemCore ChipSet Controller commands.

The GemCore ChipSet Controller configuration commands are:

- Configure SIO Line
- Set Mode
- Set Delay
- Read Firmware Version

Find in this section a description of these commands.

## **CONFIGURE SIO LINE**

This command sets the SIO line parity, Baud rate, and number of bits per character. After a power up the line defaults to no parity, 8 bits per character and 9600 Baud.

*Note:* The line is reconfigured as soon as this command is executed. The response is returned with the newly specified parameters.

## Format 0Ah CB

where:

*CB* = configuration byte. Flag the required configuration according to the following table:

| Bit    | Value | Option Selected                                      |
|--------|-------|------------------------------------------------------|
| 7 to 5 |       | Not used                                             |
| 4      | 0     | No parity                                            |
|        | 1     | Even parity                                          |
| 3      | 0     | 8 bits per character                                 |
|        | 1     | 7 bits per character                                 |
| 2 to 0 | XXX   | Sets the baud rate according to the following table: |
|        | Value | Baud rate selected                                   |
|        | 000   | RFU                                                  |
|        | 001   | 76 800                                               |
|        | 010   | 38 400                                               |
|        | 011   | 19 200                                               |
|        | 100   | 9 600                                                |
|        | 101   | 4 800                                                |
|        | 110   | 2 400                                                |
|        | 111   | 1 200                                                |

## SET MODE

This command enables you to disable ROS command compatibility and define the GemCore ChipSet operation mode (TLP or Normal). The GemCore ChipSet defaults to ROS command compatibility enabled and TLP mode.

#### Notes:

- 1. Disabling ROS command compatibility disables this command. You can only enable again ROS command compatibility by performing a hardware reset on the GemCore ChipSet so that the default configuration is reinstated.
- 2. Disabling ROS command compatibility also disables TLP mode, irrespective of the value of bit 4 (see below).

## Format

**01h 00h** [OB]

where:

[OB] = option selection byte. Flag the required options according to the following table:

|          | Native | ROS | TLP |
|----------|--------|-----|-----|
| xxxx1xx1 | Ú      | Ú   | Ú   |
| xxxx1xx0 | Ú      | Ú   |     |
| xxxx0xx0 | Ú      |     |     |

*Note:* If you do not send this byte, the GemCore ChipSet operation mode is not modified, however, the result is returned.

Result

S < mode >

where:

[mode] = The mode the GemCore ChipSet is operating in. This is returned on one byte that flags the operation mode according to the following table:

|          | Native | ROS | TLP |
|----------|--------|-----|-----|
| 00001001 | Ú      | Ú   | Ú   |
| 00001000 | Ú      | Ú   |     |
| 0000000  | Ú      |     |     |

*Note:* In TLP mode, the GemCore ChipSet Controller adds the TA1, TB1, TC1, TD1 bytes if they are not present in an asynchronous card Answer to Reset.

## SET DELAY

If you are using a slow host computer with the GemCore ChipSet Controller, you can use this command to delay responses.

## Format 23h 01h 00h 4Ch 01h Delay

where:

Delay = response delay in ms. Enter a value between 0 and 255. On power up, the delay time defaults to 0.



|        | READ FIRMWARE VERSION                                                 |  |
|--------|-----------------------------------------------------------------------|--|
|        | Returns the version of the firmware installed in the GemCore ChipSet. |  |
| Format | 22h 05h 3Fh E0h 10h                                                   |  |
| Result | <b>S</b> Version                                                      |  |
|        | where:                                                                |  |
|        | Version (GemCore-XXXX) is the installed software                      |  |
|        | version in ASCII.                                                     |  |
|        |                                                                       |  |
|        |                                                                       |  |
|        | OROS compatible command:                                              |  |
| Format | 22h 05h 3Fh F0h 10h                                                   |  |
| Result | <b>S</b> OROS-R2.99-R1.00                                             |  |

## Card Interface Command Set

The card interface commands manage all communications with smart cards. The card interface commands are:

- Power Down
- Power Up
- ISO Output
- ISO Input
- Exchange APDU
- Define Card type
- Card Status

The following paragraphs describe these commands.

|            | POWER DOWN                                                                                                                |  |  |
|------------|---------------------------------------------------------------------------------------------------------------------------|--|--|
|            | Use this command to power down the card. The GemCore ChipSet Controller powers down automatically when a card is removed. |  |  |
| GCC Format | 11h Card #0                                                                                                               |  |  |
|            | <b>19h</b> Card #1                                                                                                        |  |  |
| ROS Format | <b>4Dh</b> 00h 00h <i>Card #0 only</i>                                                                                    |  |  |
| Result     | S                                                                                                                         |  |  |
|            | The power down command always ends without error if a card is present in the GemCore ChipSet.                             |  |  |
|            | If no card is inserted, the command returns the Fbh error "card absent".                                                  |  |  |

|            | POWER UP                                                                  |                                                                                                                                                                                                                                                                                                                           |  |  |
|------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|            | This command powe                                                         | rs up and resets a card.                                                                                                                                                                                                                                                                                                  |  |  |
| GCC Format | 12h [CFG][PTS0,P]                                                         | 12h [CFG][PTS0,PTS1,PTS2,PTS3,PCK] Card #0                                                                                                                                                                                                                                                                                |  |  |
|            | 1Ah [CFG][PTS0,P                                                          | TS1,PTS2,PTS3,PCK] Card #1                                                                                                                                                                                                                                                                                                |  |  |
| ROS Format | <b>6Eh</b> 00h 00h                                                        | 00h Card #0 only                                                                                                                                                                                                                                                                                                          |  |  |
|            | _                                                                         | ameter: the card is powered by 5V, there is no PTS operating mode is compatible with OROS2.2X                                                                                                                                                                                                                             |  |  |
|            | The parameter CFG                                                         | s present:                                                                                                                                                                                                                                                                                                                |  |  |
|            | XXXXXX01                                                                  | Class A Vcc for Card or Module is 5V                                                                                                                                                                                                                                                                                      |  |  |
|            | XXXXXX10                                                                  | Class B Vcc for Card or Module is 3V                                                                                                                                                                                                                                                                                      |  |  |
|            | XXXXXX11                                                                  | Class AB Vcc for Card or Module is 5V or 3V                                                                                                                                                                                                                                                                               |  |  |
|            | 0000XXXX                                                                  | Operation is compatible with OROS2.2X                                                                                                                                                                                                                                                                                     |  |  |
|            | 0001XXXX                                                                  | Reset and no PTS management. The GemCore ChipSet stays at 9600 baud if the card is in negotiable mode.                                                                                                                                                                                                                    |  |  |
|            | 0010XXXX                                                                  | Reset and automatic PTS management. The GemCore<br>ChipSet takes the highest speed proposed by the card.<br>Change to $T=1$ protocol if there is a choice between $T=0$<br>and $T=1$ .                                                                                                                                    |  |  |
|            | 1111XXXX                                                                  | Manual management of PTS. This command does not<br>reset the card. It must be preceded by a command with the<br>PTS parameter at 0001XXXX. The parameters from<br>PTS0 to PCK are sent to the card at 9600 baud. If the card<br>replies with PTS REQUEST, the GemCore ChipSet is<br>configured using the sent parameters. |  |  |
| Result     | <b>s</b> <card respon<="" th=""><th>se&gt;</th></card>                    | se>                                                                                                                                                                                                                                                                                                                       |  |  |
|            | where:                                                                    |                                                                                                                                                                                                                                                                                                                           |  |  |
|            | <card response<="" td=""><td>&gt; = the card Answer to Reset.</td></card> | > = the card Answer to Reset.                                                                                                                                                                                                                                                                                             |  |  |
|            |                                                                           | t do not return an Answer to Reset, a default Answer to Reset<br>00 00 00 00 00                                                                                                                                                                                                                                           |  |  |
|            | Using the ROS comn<br>three bytes R1, R2, R                               | nand, if TLP compatibility is enabled, the ATR is preceded by 3.                                                                                                                                                                                                                                                          |  |  |
|            | R1: compatibility me                                                      | ode 28h: TLP                                                                                                                                                                                                                                                                                                              |  |  |
|            |                                                                           | 01h: ROS                                                                                                                                                                                                                                                                                                                  |  |  |
|            | R2: current card type                                                     |                                                                                                                                                                                                                                                                                                                           |  |  |
|            | R3: ATR length                                                            |                                                                                                                                                                                                                                                                                                                           |  |  |

|                   | $TA_1$ | $TB_1$ | $TC_1$ | $TD_1$ |
|-------------------|--------|--------|--------|--------|
| Asynchronous Card | 11h    | 25h    | 00h    | 00h    |
| Synchronous Card  | 00h    | 00h    | 00h    | 00h    |

**Note:** When the TLP compatibility is enabled (see Set Mode command) the  $TA_1$ ,  $TB_1$ ,  $TC_1$  and  $TD_1$  bytes absent from the Answer to Reset are returned with their default value:

## ISO OUTPUT

This command sends ISO Out commands, that is, commands that retrieve data from a card. For memory cards, specific commands that are formatted in the same way as ISO commands are accepted. These commands are listed in the Using the GemCore ChipSet Controller with Memory Cards section.

| GCC Format | 13h CLA INS A1 A2 LN Card #0                                                                                                                                                                                                                                                                                                                             |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | 1Bh CLA INS A1 A2 LN Card #1                                                                                                                                                                                                                                                                                                                             |
| ROS Format | DBh CLA INS A1 A2 LN Card #0 only                                                                                                                                                                                                                                                                                                                        |
|            | where:                                                                                                                                                                                                                                                                                                                                                   |
|            | <i>CLA, INS, A1, A2</i> , and <i>LN</i> are the five ISO header bytes. For more details about the ISO header contents, refer to the documentation relevant to the card you are using. The ISO header is directly transmitted to microprocessor cards (asynchronous cards) and is interpreted by the GemCore ChipSet Controller for GEMPLUS memory cards. |
| Result     | <b>s</b><br><data> SW1 SW2</data>                                                                                                                                                                                                                                                                                                                        |
|            | where:                                                                                                                                                                                                                                                                                                                                                   |
|            | $\langle data \rangle = Up$ to 252 bytes of data returned by the card. If a smart card error or GCC error is detected (S<>0 and S<>E7h), the GCC does not return any data. The card may return any number of bytes up to LN.                                                                                                                             |

## ISO INPUT

This command sends ISO In commands, that is, commands that send data to a card. For memory cards, the GemCore ChipSet Controller accepts specific commands that are formatted in the same way as ISO commands. These commands are listed in the Using the GemCore ChipSet Controller with Memory Cards section.

| GCC Format | <b>14h</b> CLA INS A1 A2 LN <data> Card #0</data>                                                                                                                                                                                                                                                                                 |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | 1Ch CLA INS A1 A2 LN <data> Card #1</data>                                                                                                                                                                                                                                                                                        |
| ROS Format | DAh CLA INS A1 A2 LN <data> Card #0 only</data>                                                                                                                                                                                                                                                                                   |
|            | where:                                                                                                                                                                                                                                                                                                                            |
|            | <i>CLA, INS, A1, A2</i> , and <i>LN</i> are the five ISO header bytes. For more details about the ISO header contents, refer to the documentation relevant to the card you are using. The ISO header is directly transmitted to microprocessor cards (asynchronous cards) and is interpreted by the GCC for GEMPLUS memory cards. |
|            | <data> represents the LN data bytes transmitted to the card after the ISO header.<br/>The maximum length of the data is 248 bytes.</data>                                                                                                                                                                                         |
| Result     | <b>S</b> SW1 SW2                                                                                                                                                                                                                                                                                                                  |
|            | The bytes <i>SW1</i> and <i>SW2</i> hold the standard status codes returned by the card. Their respective values are 90h and 00h if the operation is successful.                                                                                                                                                                  |
|            | <i>Note</i> : For GEMPLUS memory cards, SW1 and SW2 are returned.                                                                                                                                                                                                                                                                 |

|               | EXCHANGE                        | APDU              |                               |                                                                                                                           |                                  |
|---------------|---------------------------------|-------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------|
|               |                                 |                   |                               | a Protocol Unit (APDU) to a vecute this command on T                                                                      |                                  |
| GCC & ROS     | 15h APDU                        | Card              | ! #0                          |                                                                                                                           |                                  |
| Format        | 1Dh APDU                        | Card              | ! #1                          |                                                                                                                           |                                  |
|               | where:                          |                   |                               |                                                                                                                           |                                  |
|               | card information blocks. The co | on field<br>mmanc | size, it is tru<br>d APDU mus | he APDU command length i<br>incated and sent to the card i<br>it not exceed 248 bytes in ler<br>for the APDU command deta | in several chained ngth. See the |
| Result        | <b>s</b> Response               | APDU              | r                             |                                                                                                                           |                                  |
|               | where:                          |                   |                               |                                                                                                                           |                                  |
|               | chained blocks                  | , they a          | re concatena                  | APDU to the command. If ted. The response APDU m ation for the card in use for t                                          | ust not exceed 252               |
| APDU Format   | The APDU for                    | mat is c          | defined by th                 | e ISO 7816-4 standard.                                                                                                    |                                  |
|               |                                 | -                 |                               | al cases, depending on the le<br>t Controller supports the foll                                                           | -                                |
|               | Case 1-no com                   | mand o            | or response d                 | ata.                                                                                                                      |                                  |
|               | Case 2-Short f                  | ormat:            | command da                    | ta between 1 and 255 bytes a                                                                                              | and no response data.            |
|               | Case 3-Short f                  | ormat:            | no command                    | data, between 1 and 256 by                                                                                                | tes.                             |
|               | Case 4-Short f between 1 and    |                   |                               | ta between 1 and 255 bytes,                                                                                               | response data                    |
|               | These cases are                 | e referre         | ed to as 1, 28                | 5, 3S, and 4S respectively.                                                                                               |                                  |
| Command       | Commands are                    | accept            | ed in the foll                | owing format:                                                                                                             |                                  |
| Format        | Header                          |                   |                               | Body                                                                                                                      |                                  |
|               | CLA INS P1                      | P2                | Lc                            | Parameters/data                                                                                                           | Le                               |
|               |                                 |                   |                               |                                                                                                                           |                                  |
|               | The fields are o                | lescribe          | ed below:                     |                                                                                                                           |                                  |
| Header Fields | The Header fie                  | lds are           | mandatory, a                  | and are as follows:                                                                                                       |                                  |
|               | Field Name                      | Leng              | th I                          | Description                                                                                                               |                                  |
|               | CLA                             | 1                 | Ι                             | nstruction class.                                                                                                         |                                  |
|               | INS                             | 1                 |                               | nstruction code. This is give ommand descriptions.                                                                        | en with the                      |
|               | P1                              | 1                 | H                             | Parameter 1.                                                                                                              |                                  |
|               | P2                              | 1                 | Ι                             | Parameter 2.                                                                                                              |                                  |

| Body Fields | The command body is optional. It includes the following fields: |        |                                        |  |
|-------------|-----------------------------------------------------------------|--------|----------------------------------------|--|
| Body Fields | Field Name                                                      | Length | Description                            |  |
|             | Lc                                                              | 1      | Data length                            |  |
|             | Data                                                            | Lc     | Command parameters or data             |  |
|             | Le                                                              | 1      | Expected length of data to be returned |  |

For full details about the Header and Body field contents refer to the documentation for the card in use.

#### **Response Format** Re

Responses to commands are received in the following format.

| Body | Trailer  |
|------|----------|
| Data | SW1, SW2 |

The Body is optional and holds the data returned by the card.

The Trailer includes the following two mandatory bytes:

SW1: Status byte 1 that returns the command processing status

SW2: Status byte 2 that returns the command processing qualification

For full details about the Response field contents refer to the documentation for the card in use.

**IFSC/IFSD**In case of chaining, the buffer length is determined by IFSC and IFSD parameters.<br/>The default value is 32 bytes for IFSD (data buffer length).

If in the ATR the smart card indicates an IFSC (Card data buffer length) value, the GemCore ChipSet considers that value as the IFSD length and will use it for chained exchanges with the smart card.

## **DEFINE CARD TYPE**

The GemCore ChipSet Controller does not have a smart card recognition algorithm. You must define the card type in use. This command sets the card type and programming voltage. Note that the ROS and GCC versions of this command are different. The two formats are described below.

*Note:* When the OROS based GemCore ChipSet is reset or powered up, the card type defaults to microprocessor card in standard mode (Type 2).

GCC Format17h TCard #01Fh T01hCard #1ROS Format02h TCard #0 only

where:

T =Card type selection byte. Enter the code for the card type that you are using on the four least significant bits (bits 3 to 0). The card type codes are as follows:

| Enter this code: | To use this card:                                                                               |
|------------------|-------------------------------------------------------------------------------------------------|
| 01h              | Other synchronous smart cards; interpreted driver. See <i>Appendix B</i> .                      |
| 02h              | Standard speed mode (clock frequency = 3.6864 MHz) ISO 7816-3 T=0 and T=1 microprocessor cards. |
| 12h              | Double speed mode (clock frequency = $7.3728$ Mhz) ISO 7816-3 T=0 and T=1 microprocessor cards. |
| 03h              | GPM256                                                                                          |
| 04h              | GPM416/GPM896 in Standard Mode                                                                  |
| 14h              | GPM416/GPM896 in Personalization Mode                                                           |
| 06h              | GFM2K/GFM4K                                                                                     |
| 07h              | GPM103                                                                                          |
| 08h              | GPM8K(SLE4418/4428)                                                                             |
| 09h              | GPM2K(SLE4432/4442 or PCB2032/2042)                                                             |
| 10h              | GAM144                                                                                          |

If the command is entered with a family number that is different from that of the current card, the current card is powered down. You can also use this command to modify the voltage without changing the card type in use by entering the same card code as that in use.

Result

s

## CARD STATUS

Sends the above command to know the smart card interface or the security module's status. It returns information relating to:

- card type in use
- card presence
- power supply value
- powered up card
- communication protocol (T=0, T=1)
- speed parameters between card and GemCore ChipSet

| GCC Format |              | Card #0             |                                  |  |  |
|------------|--------------|---------------------|----------------------------------|--|--|
|            | <b>1Fh</b> ( | Card #1             |                                  |  |  |
| Result     | S STAT       | TYPE CNF1 CNF2 CN   | IF3 CNF4                         |  |  |
|            | where        |                     |                                  |  |  |
|            | STAT:        | NNNNXXXX            | Card number                      |  |  |
|            |              |                     | 0000XXXX=Card#0                  |  |  |
|            |              |                     | 0001XXXX=Card#1                  |  |  |
|            |              | XXXXXXX0            | power supply $= 5V$              |  |  |
|            |              | XXXXXXX1            | power supply $= 3V$              |  |  |
|            |              | XXXXXXX0X           | card not powered                 |  |  |
|            |              | XXXXXXIX            | card powered                     |  |  |
|            |              | XXXXX0XX            | card not inserted                |  |  |
|            |              | XXXXX1XX            | card inserted                    |  |  |
|            |              | XXXX0XXX            | protocol T=0                     |  |  |
|            |              | XXXX1XXX            | protocol T=1                     |  |  |
|            | TYPE:        | Activated Card type |                                  |  |  |
|            | CNF1         | CNF1=TA1 (FI/DI)    | T=0 Card according to ISO 7816/3 |  |  |
|            | CNF2         | CNF2=TC1 (EGT)      |                                  |  |  |
|            | CNF3         | CNF3=WI             |                                  |  |  |
|            | CNF4         | CNF4=00             |                                  |  |  |

| CNF1 | CNF1=TA1 (FI/DI)   | T=1 Card according to ISO 7816/3 |
|------|--------------------|----------------------------------|
| CNF2 | CNF2=TC1 (EGT)     |                                  |
| CNF3 | CNF3=IFSC          |                                  |
| CNF4 | CNF4=TB3 (BWI/CWI) |                                  |
|      |                    |                                  |
| CNF1 | CNF1=00            | Synchronous Smart Cards          |
| CNF2 | CNF2=00            |                                  |
| CNF3 | CNF3=00            |                                  |
| CNF4 | CNF4=00            |                                  |

# USING THE GEMCORE CHIPSET CONTROLLER WITH MICROPROCESSOR CARDS

| The GemCore ChipSet   | Controller supports ISO 7816-3 T=0 and T=1 protocol         |
|-----------------------|-------------------------------------------------------------|
| microprocessor cards. | The following section describes the implementation of these |
| standards.            |                                                             |

| Clock Signal                   | <ul> <li>The GemCore ChipSet Controller can transmit one of two clock frequency values to the card, depending on the previously selected operating mode:</li> <li>3.6864 Mhz for the standard mode (ISO compliance)</li> </ul>                                                                                                       |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                | <ul> <li>5.0004 Whiz for the standard mode (ISO comphance)</li> <li>7.3728 Mhz for the double speed mode (above the ISO range for cards that can operate at this frequency)</li> </ul>                                                                                                                                               |
|                                | You specify the operating mode while selecting the card type using the DEFINE CARD TYPE command. Select card type 02h for the standard mode and card type 12h for the double speed mode.                                                                                                                                             |
| Global Interface<br>Parameters | These parameters are returned by the microprocessor card during the Answer to Reset. For more information on these parameters please refer to the ISO 7816-3 standard document.                                                                                                                                                      |
| TA1 Parameter                  | The GemCore ChipSet Controller interprets this parameter to match its communication rate with that of the card, based on the clock rate conversion factor F. F is coded on the most significant nibble and the bit rate adjustment factor D, is coded on the least significant nibble.                                               |
|                                | The initial communication rate used during the Answer to Reset is 9909.68 baud in the standard mode and 19819.35 baud in the double speed mode.                                                                                                                                                                                      |
|                                | After it receives the Answer to Reset, the GemCore ChipSet Controller installs the communication rate depending on TA1. Table 1 and Table 2 below show the clock rate conversion factors, the bit rate conversion factors, and the baud rates installed in relation to the TA1 values for standard mode and double speed mode cards. |
|                                | <i>Note</i> : The GemCore ChipSet Controller only supports the TA1 shaded values in Tables 1 and 2.                                                                                                                                                                                                                                  |
| TB1 and TB2                    | The Vpp option is not available on the GemCore ChipSet Controller. TB1 and TB2 parameters are ignored and the Vpp default value is set to 5V.                                                                                                                                                                                        |

TC1

This parameter defines the extra guardtime N, required by the card. This parameter is processed when sending characters to the card, to ensure a delay of at least (12+N) etu between two characters.

| D=   |     | 1         |     | 2         |     | 4         |     | 8         |     | 16         |
|------|-----|-----------|-----|-----------|-----|-----------|-----|-----------|-----|------------|
| F=   | TA1 | Rate (bd)  |
| 372  | 11  | 9 909.68  | 12  | 19 819.35 | 13  | 39 638.71 | 14  | 79 277.42 | 15  | 158 554.84 |
| 558  | 21  | -         | 22  | 13 212.90 | 23  | 26 425.81 | 24  | 52 851.61 | 25  | 105 703.23 |
| 744  | 31  | -         | 32  | 9 909.68  | 33  | 19 819.35 | 34  | 39 638.71 | 35  | 79 277.42  |
| 1116 | 41  | -         | 42  | -         | 43  | 13 212.90 | 44  | 26 425.81 | 45  | 52 851.61  |
| 1488 | 51  | -         | 52  | -         | 53  | 9 909.68  | 54  | 19 819.35 | 55  | 39 638.71  |
| 1860 | 61  | -         | 62  | -         | 63  | -         | 64  | 15 855.48 | 65  | 31 710.97  |
| 512  | 91  | -         | 92  | 14 400.00 | 93  | 28 800.00 | 94  | 57 600.00 | 95  | 115 200.00 |
| 768  | A1  | -         | A2  | -         | A3  | 19 200.00 | A4  | 38 400.00 | A5  | 76 800.00  |
| 1024 | B1  | -         | B2  | -         | B3  | 14 400.00 | B4  | 28 800.00 | B5  | 57 600.00  |
| 1536 | C1  | -         | C2  | -         | C3  | -         | C4  | 19 200.00 | C5  | 38 400.00  |
| 2048 | D1  | -         | D2  | -         | D3  | -         | D4  | 14 400.00 | D5  | 28 800.00  |

Table 1. Supported TA1 values in standard mode (clock frequency = 3.6864 Mhz)

| D=   |     | 1         |     | 2         |     | 4         |     | 8          |     | 16        |
|------|-----|-----------|-----|-----------|-----|-----------|-----|------------|-----|-----------|
| F=   | TA1 | Rate (bd)  | TA1 | Rate (bd) |
| 372  | 11  | 19819.35  | 12  | 39 638.71 | 13  | 79 277.42 | 14  | 158 554.84 | 15  | -         |
| 558  | 21  | 13 212.90 | 22  | 26 425.81 | 23  | 52 851.61 | 24  | 105 703.23 | 25  | -         |
| 744  | 31  | 9 909.68  | 32  | 19 819.35 | 33  | 39 638.71 | 34  | 79 277.42  | 35  | -         |
| 1116 | 41  | -         | 42  | 13 212.90 | 43  | 26 425.81 | 44  | 52 851.61  | 45  | -         |
| 1488 | 51  | -         | 52  | 9 909.68  | 53  | 19 819.35 | 54  | 39 638.71  | 55  | -         |
| 1860 | 61  | -         | 62  | -         | 63  | 15 855.48 | 64  | 31 710.97  | 65  | -         |
| 512  | 91  | 14 400.00 | 92  | 28 800.00 | 93  | 57 600.00 | 94  | 115 200.00 | 95  | -         |
| 768  | A1  | -         | A2  | 19 200.00 | A3  | 38 400.00 | A4  | 76 800.00  | A5  | -         |
| 1024 | B1  | -         | B2  | 14 400.00 | B3  | 28 800.00 | B4  | 57 600.00  | В5  | -         |
| 1536 | C1  | -         | C2  | -         | C3  | 19 200.00 | C4  | 38 400.00  | C5  | -         |
| 2048 | D1  | -         | D2  | -         | D3  | 14 400.00 | D4  | 28 800.00  | D5  | -         |

| Communication<br>Protocols | The least significant nibble of the TD1 parameter in the Answer to Reset defines the protocol (T=0 or T=1) to be used by the GemCore ChipSet, according to the following table:                                                                                                      |                                                                                                                                                                                                                            |  |  |  |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                            | This value:                                                                                                                                                                                                                                                                          | Selects this protocol:                                                                                                                                                                                                     |  |  |  |
|                            | 0                                                                                                                                                                                                                                                                                    | T=0                                                                                                                                                                                                                        |  |  |  |
|                            | 1                                                                                                                                                                                                                                                                                    | T=1                                                                                                                                                                                                                        |  |  |  |
|                            | If the GemCore protocol.                                                                                                                                                                                                                                                             | ChipSet does not receive a TD1 value, it defaults to the T=0                                                                                                                                                               |  |  |  |
| T=0 Protocol               | The TC2 specific interface parameter is interpreted to set the value of the wo waiting time, W. When this parameter is absent, a maximum of 960xD etu elapsed before timing-out on a character sent by the card takes place. Otherw there is a maximum of 960xDxW before timing-out. |                                                                                                                                                                                                                            |  |  |  |
|                            | To send instruc<br>Output commar                                                                                                                                                                                                                                                     | tions to a T=0 microprocessor card, you use the ISO Input and ISO ads.                                                                                                                                                     |  |  |  |
| T=1 Protocol               | command. The                                                                                                                                                                                                                                                                         | tions to a T=1 microprocessor card, you use the <i>Exchange APDU</i> T=1 specific interface bytes are interpreted according to clause 9 of standard. These bytes are TA <sub>3</sub> , TB <sub>3</sub> , TC <sub>3</sub> . |  |  |  |
|                            | $TA_3$ codes the I bytes.                                                                                                                                                                                                                                                            | nformation Field Size of the card (IFSC). The default value is 32                                                                                                                                                          |  |  |  |
|                            | $TB_3$ codes the H Time Integer).                                                                                                                                                                                                                                                    | BWI (Block Writing Time Integer) and CWI (Character Waiting                                                                                                                                                                |  |  |  |
|                            | TC <sub>3</sub> defines the                                                                                                                                                                                                                                                          | Error Detection Code (EDC) type.                                                                                                                                                                                           |  |  |  |

# USING THE GEMCORE CHIPSET CONTROLLER WITH MEMORY CARDS

Memory cards cannot interpret smart card instructions in the same way as ISO 7816-3 microprocessor cards can. Therefore T=0 are formatted instructions are interpreted and converted into the appropriate timing sequences required to control the memory cards listed in the table below.

For further details, refer to the relevant card documentation.

You send these instructions to the GemCore ChipSet, using the ISO Input and ISO Output commands

|           |                               | ISO Input/ISO Output Command Parameters (CLA = 00) |    |                  |              |  |  |
|-----------|-------------------------------|----------------------------------------------------|----|------------------|--------------|--|--|
| Card Type | Command Name                  | INS                                                | A1 | A2               | Ln           |  |  |
| GPM256    | Write Bytes                   | D0                                                 | 00 | Start<br>Address | Write Length |  |  |
|           | Read Bytes                    | B0                                                 | 00 | Start<br>Address | Read Length  |  |  |
| GPM103    | Write Bytes                   | D0                                                 | 00 | Start<br>Address | Write Length |  |  |
|           | Erase and Write<br>Carry      | DE                                                 | 01 | Counter to erase | 0            |  |  |
|           | Write New value to<br>Counter | D2                                                 | 05 | 08               | 02           |  |  |
|           | Read Bytes                    | B0                                                 | 00 | Start<br>Address | Read Length  |  |  |
|           | Read Counter<br>Value         | B2                                                 | 05 | 08               | 02           |  |  |

#### **Memory Card Command Summary**

Continued on following page

|           |                             | ISO Inp | out/ISO Output Comma            | nd Parameter     | rs (CLA = 00) |
|-----------|-----------------------------|---------|---------------------------------|------------------|---------------|
| Card Type | Command Name                | INS     | A1                              | A2               | Ln            |
| GPM896    | Write Bytes                 | D0      | 00                              | Start<br>Address | Write Length  |
|           | Erase Word                  | DE      | Number of words                 | Start<br>Address | 00            |
|           | Present Erase<br>Code1      | 20      | 00                              | 36               | 06            |
|           | Present Erase<br>Code2      | 20      | 80                              | 5C               | 04            |
|           | Present Card Secret<br>Code | 20      | 04                              | 0A               | 02            |
|           | Present Secret Code         | 20      | Number of bits in error counter | Start<br>Address | Code Length   |
|           | Read                        | B0      | 00                              | Start<br>Address | Read Length   |
| GPM416    | Write Bytes                 | D0      | 00                              | Start<br>Address | Write Length  |
|           | Erase Word                  | DE      | Number of words                 | Start<br>Address | 00            |
|           | Present Erase Code          | 20      | 40                              | 28               | 04            |
|           | Present Card Secret<br>Code | 20      | 04                              | 08               | 02            |
|           | Read                        | B0      | 00                              | Start<br>Address | Read Length   |
| GAM144    | Write Bytes                 | D0      | 00                              | Start<br>Address | Write Length  |
|           | Erase                       | 0E      | 01                              | Start<br>Address | 00            |
|           | Write value                 | D2      | 05                              | 08               | 02            |
|           | Restore                     | D4      | No. bytes to restore            | 08               | 00            |
|           | Blow Fuse                   | DA      | Fuse ID                         | 1A               | 00            |
|           | Authenticate                | 88      | 12                              | 19               | 00            |
|           | Read Bytes                  | B0      | 00                              | Start<br>Address | Read Length   |
|           | Read Counter<br>Value       | B2      | 05                              | 08               | 02            |
|           | Get Result                  | C0      | 00                              | 00               | 01            |

## Memory Card Command Summary (continued)

Continued on following page

|                                       |                   | ISO Inp | D Input/ISO Output Command Parameters (CLA = 00)                                 |                                                    |                           |  |  |
|---------------------------------------|-------------------|---------|----------------------------------------------------------------------------------|----------------------------------------------------|---------------------------|--|--|
| Card Type                             | Command Name      | INS     | A1                                                                               | A2                                                 | Ln                        |  |  |
| SLE4418/4428<br>GPM8K                 | Read Bytes        | BO      | 00 = Data memory                                                                 | Start<br>Address<br>Least<br>Significant<br>Nibble | Read Length               |  |  |
|                                       | Write Bytes       | D0      | 00 = Data memory                                                                 | Start<br>Address<br>Least<br>Significant<br>Nibble | Write Length              |  |  |
|                                       | Check Secret Code | 20      | 00                                                                               | 00                                                 | 02                        |  |  |
| SLE4432/4442<br>PCB2032/2042<br>GPM2K | Read Memory       | BO      | Memory Area:<br>00=Data Memory<br>80=Data Protection<br>Area<br>C0=Security Area | Read Start<br>Address                              | Length of<br>Data to Read |  |  |
|                                       | Write Memory      | D0      | Memory Area:<br>00=Data Memory<br>80=Data Protection<br>Area<br>C0=Security Area | Write Start<br>Address                             | Length of<br>Write Data   |  |  |
|                                       | Check Secret Code | 20      | 00                                                                               | 00                                                 | 03                        |  |  |

## Memory Card Command Summary (continued)

# **APPENDIX A. STATUS CODES**

The returned status codes are listed in the table below.

| Code     | Meaning                                                                                                                                                                       |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 01h      | Unknown driver or command.                                                                                                                                                    |
| 02h      | Operation not possible with this driver.                                                                                                                                      |
| 03h      | Incorrect number of arguments.                                                                                                                                                |
| 04h      | GemCore ChipSet command unknown. The first byte of the command is not a valid command code.                                                                                   |
| 05h      | Response too long for the buffer.                                                                                                                                             |
| 09h      | Communication protocol error. The header of a message is neither ACK or NACK (60h or E0h)                                                                                     |
| 10h      | Response error at the card reset. The first byte of the response (TS) is not valid                                                                                            |
| 11h      | ISO command header error. The byte INS in the ISO header is not valid (6x or 9x).                                                                                             |
| 12h      | Message too long. The buffer is limited to 254 bytes, of which 248 bytes are for the data exchanged with the card                                                             |
| 13h      | Byte reading error returned by an asynchronous card.                                                                                                                          |
| 15h      | Card turned off. A Power Up command must be applied to the card prior to any other operation.                                                                                 |
| 16h      | Programming voltage not available. The parameter V in the DEFINE CARD TYPE command is not valid.                                                                              |
| 17h, 18h | Communication protocol unknown or incorrectly initialized.                                                                                                                    |
| 19h      | Illegal access to external bus.                                                                                                                                               |
| 1Ah      | Error in an ISO format card command. The parameter LN in the ISO header does not correspond to the actual length of the data.                                                 |
| 1Bh      | A command has been sent with an incorrect number of parameters.                                                                                                               |
| 1Dh      | The check byte TCK of the response to reset of a microprocessor card is incorrect.                                                                                            |
| 1Eh      | An attempt has been made to write to external memory, which is write protected.                                                                                               |
| 1Fh      | Incorrect data has been sent to the external memory. This error is returned after a write check during a downloading operation.                                               |
| A0h      | Error in the card reset response, such as unknown exchange protocol, or byte TA1 not recognized. The card is not supported. The card reset response is nevertheless returned. |
| A1h      | Card protocol error (T=0/T=1).                                                                                                                                                |
| A2h      | Card malfunction. The card does not respond to the reset or has interrupted an exchange (by time-out).                                                                        |
| A3h      | Parity error (in the course of an exchange microprocessor). The error only occurs after several unsuccessful attempts at re transmission.                                     |

| A4h | Card has aborted chaining (T=1).                                                                                                                       |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| A5h | GemCore chipset has aborted chaining (T=1).                                                                                                            |
| A6h | Protocol type Selection (PTS) error.                                                                                                                   |
| CFh | Overkey already pressed.                                                                                                                               |
| E4h | The card has just sent an invalid "Procedure Byte" (see ISO 7816-3).                                                                                   |
| E5h | The card has interrupted an exchange (the card sends an SW1 byte but more data has to be sent or received).                                            |
| E7h | Error returned by the card. The bytes SW1 and SW2 returned by the card are different from 90h 00.                                                      |
| F7h | Card removed. The card has been withdrawn in the course of carrying out of a command. Check that the card instruction is not partially completed.      |
| F8h | The card is consuming too much electricity or is short circuiting.                                                                                     |
| FBh | Card absent. There is no card in the smart card interface. The card may have been removed when it was powered up, but no command has been interrupted. |

## APPENDIX B. INTERPRETED SYNCHRONOUS SMART CARD DRIVER

| This command is used to handle synchronous card protocols which are not<br>supported by GemCore. The protocol to be used is defined by parameters specified<br>in 8051 assembler code.<br>The 8051 assembler (INTEL ASM51) generates the commands to be executed and<br>the GemCore software interprets the bytes as 8051 operation codes.<br>The GemCore interpreter can execute most 8051 instructions along with a few<br>macro commands dedicated to synchronous cards.      |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 16h CLA INS A1 A2 Lin <data in=""> Lout Lcode <code>where:CLA, INS, A1, A2 are the command parameters.Linis the number of bytes present in the DATA IN field.DATA INLoutis the length of the expected response.Lcodeis the number of bytes present in the CODE field.coDEis the 8051 executable code.</code></data>                                                                                                                                                              |  |  |  |  |
| S <data byte=""></data>                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| <ul> <li>The GemCore interpreter handles the following functions:</li> <li>An accumulator (A)</li> <li>Eight registers (R0 to R7)</li> <li>A carry (C)</li> <li>A program counter (PC)</li> <li>All instructions concerning the IDATA or XDATA RAM memories, also have an incidence on the XDATA memory. The XDATA memory starts at address 0000h and ends at address 00FFh.</li> <li>The instruction to be executed is registered in this memory area (command 16h).</li> </ul> |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |

Only relative jumps can be used.

| Initialization  | Upon reception of a 16h command, the interpreter registers are initialized as follows:                                                                                                                                                                                        |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | PC points to the first <code> byte.<br/>C = 0<br/>A = CLA<br/>R0 and R4 point to the address following the last <code>byte.<br/>R1 points to the address of the first <data in=""> byte.<br/>R2 = Lin<br/>R3 = Lout<br/>R5 = INS<br/>R6 = A1<br/>R7 = A2</data></code></code> |
|                 | <pre>16h CLA=A INS=R5 A1=R6 A2=R7 Lin=R2 <datain> Lout=R3 Lcode <code></code></datain></pre>                                                                                                                                                                                  |
| Card Presence   | Before executing a 16h command, the software checks that a card is actually present in the smart card connector.                                                                                                                                                              |
|                 | If the card is missing the following error message will be returned: "CARD ABSENT" ( $S = FBh$ ).                                                                                                                                                                             |
| Card Withdrawal | As soon as the smart card is powered up, the GemCore card withdrawal interruption is activated.                                                                                                                                                                               |
|                 | If the card is withdrawn, the interpreted program is interrupted, all contacts with the smart card are deactivated and the following error message is returned : "CARD WITHDRAWN" (S = F7h).                                                                                  |
| Short Circuit   | The card power up instructions check for short circuits between pins C1 (VCC) and C5 (GND).                                                                                                                                                                                   |
|                 | If a short circuit is detected, the following error message is returned : "TOO MUCH CONSUMPTION" (S = F8h).                                                                                                                                                                   |

## Instructions

The following table is used to obtain a hexadecimal instruction code. The line number defines the four most significant bits and the column number defines the least significant bits (e.g. INC A = 04h).

*Note:* The instructions in italics are macro-commands. See the "Macro-Commands" section for more details.

|   | 0        | 1        | 2         | 3         | 4                   | 5 | 6                     | 7                     |
|---|----------|----------|-----------|-----------|---------------------|---|-----------------------|-----------------------|
| 0 | NOP      | VCC_OFF  |           | RR A      | INC A               |   | INC @R0               | INC @R1               |
|   | 1/12     | 1/       |           | 1/16      | 1/18                |   | 1/22                  | 1/22                  |
| 1 |          | VCC_ON   | RESET     | RRC A     | DEC A               |   | DEC @R0               | DEC @R1               |
|   |          | 1/       | 1/        | 1/19      | 1/18                |   | 1/22                  | 1/22                  |
| 2 |          | CLR_RST  | RET (*)   | RL A      | ADD A,#data         |   | ADD A,@R0             | ADD A,@R1             |
|   |          | 1/13     | 1/        | 1/14      | 2/21                |   | 1/26                  | 1/26                  |
| 3 |          | SET_RST  | RETI (*)  | RLC A     | ADDC A,#data        |   | ADDC A,@RO            | ADDC A,@R1            |
|   |          | 1/13     | 1/        | 1/21      | 2/24                |   | 1/29                  | 1/29                  |
| 4 | JC rel   | CLR_IO   | RET_0K    | RDH_L     | ORL A,#data         |   | ORL A,@R0             | ORL A,@R1             |
|   | 2/15/19  | 1/13     | 1/        | 1/        | 2/17                |   | 1/22                  | 1/22                  |
| 5 | JNC rel  | SET_IO   | RET_NOK   | RDH_R     | ANL A,#data         |   | ANL A,@R0             | ANL A,@R1             |
|   | 2/15/20  | 1/13     | 2/        | 1/        | 2/17                |   | 1/22                  | 1/22                  |
| 6 | JZ rel   | CLR_CLK  | RET_ERR   | WRL_L     | XRL A,#data         |   | XRL A,@R0             | XRL A,@R1             |
|   | 2/15/19  | 1/13     | 3/        | 1/        | 2/17                |   | 1/22                  | 1/22                  |
| 7 | JNZ rel  | SET_CLK  | CLK_INC   | CLK_INC8  | MOV A,#data         |   | MOV @R0,              | MOV @R1,              |
|   | 2/17/20  | 1/13     | 1/14/XXX  | 1/14/XXX  | 2/19                |   | #data                 | #data                 |
|   |          |          |           |           |                     |   | 1/27                  | 1/27                  |
| 8 | SJMP rel | $CLR_C4$ | RDL_R     | $RDL_L$   |                     |   |                       |                       |
|   | 2/16     | 1/13     | 1/        | 1/        |                     |   |                       |                       |
| 9 |          | SET_C4   | WRH_L     | WRH_R     | SUBB A,#data        |   | SUBB A,@R0            | SUBB A,@R1            |
|   |          | 1/13     | 1/        | 1/        | 2/                  |   | 1/29                  | 1/29                  |
| Α |          | CLR_C8   | RST_PUL   | WRL_R     |                     |   |                       |                       |
|   |          | 1/13     | 1/24      |           |                     |   |                       |                       |
| В |          | SET_C8   | CLK_PUL   | CPL C     | CJNE<br>A,#data,rel |   | CJNE<br>@R0,#data,rel | CJNE<br>@R1,#data,rel |
|   |          | 1/13     | 1/24      | 1/14      | 3/27/38             |   | 3/33                  | 3/33                  |
| С |          | SET VPP  | WAIT US   | CLR C     | SWAP A              |   | XCH A,@R0             | XCH A,@R1             |
| C |          | 2/229    | 20/5100   | 1/14      | 1/15                |   | 1/27                  | 1/27                  |
| D |          |          | WAIT MS   | SETB C    |                     |   | XCHD A,@R0            | XCHD A,@R1            |
|   |          |          | 1ms/255ms | 1/14      |                     |   | 1/25                  | 1/25                  |
| Е |          | IO_TO_C  | GET D     | GET I     | CLR A               |   | MOV A,@R0             | MOV A,@R1             |
|   |          | 1/16     | 1/1100/1s | 1/1100/1s | 1/14                |   | 1/25                  | 1/25                  |
| F |          | C TO IO  | SEND D    | SEND_I    | CPL A               |   | MOV @R0,A             | MOV @R1,A             |
|   |          | 1/15     | 1/1100/1s | 1/1100/1s | 1/14                |   | 1/25                  | 1/25                  |

## Table 4. Hexadecimal instruction codes

1/12/23 means: instruction over one byte/12  $\mu$ s min/23  $\mu$ s max. (For the jump instructions, the time taken is maximum when the jump is executed).

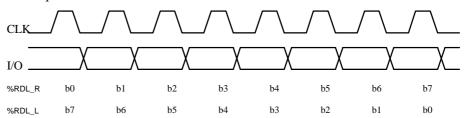
(\*) Instruction already existing in the 8051 but with a different function for the interpreter.

|   | 8            | 9            | Α            | В            | С            | D             | Е            | F            |
|---|--------------|--------------|--------------|--------------|--------------|---------------|--------------|--------------|
| 0 | INC R0       | INC R1       | INC R2       | INC R3       | INC R4       | INC R5        | INC R6       | INC R7       |
|   | 1 / 19       | 1 / 19       | 1 / 19       | 1 / 19       | 1 / 19       | 1 / 19 1 / 19 |              | 1 / 19       |
| 1 | DEC R0       | DEC R1       | DEC R2       | DEC R3       | DEC R4       | DEC R5        | DEC R6       | DEC R7       |
|   | 1 / 19       | 1 / 19       | 1 / 19       | 1 / 19       | 1 / 19       | 1 / 19        | 1 / 19       | 1 / 19       |
| 2 | ADD A,R0     | ADD A,R1     | ADD A,R2     | ADD A,R3     | ADD A,R4     | ADD A,R5      | ADD A,R6     | ADD A,R7     |
|   | 1 / 24       | 1 / 24       | 1 / 24       | 1 / 24       | 1 / 24       | 1 / 24        | 1 / 24       | 1 / 24       |
| 3 | ADDC A,R0    | ADDC A,R1    | ADDC A,R2    | ADDC A,R3    | ADDC         | ADDC A,R5     | ADDC         | ADDC A,R7    |
|   | 1 / 27       | 1 / 27       | 1 / 27       | 1 / 27       | A,R4         | 1/27          | A,R6         | 1 / 27       |
|   |              |              |              |              | 1/27         |               | 1/27         |              |
| 4 | ORL A,R0     | ORL A,R1     | ORL A,R2     | ORL A,R3     | ORL A,R4     | ORL A,R5      | ORL A,R6     | ORL A,R7     |
|   | 1 / 20       | 1 / 20       | 1 / 20       | 1 / 20       | 1 / 20       | 1 / 20        | 1 / 20       | 1 / 20       |
|   |              |              |              |              |              |               |              |              |
| 5 | ANL A,R0     | ANL A,R1     | ANL A,R2     | ANL A,R3     | ANL A,R4     | ANL A,R5      | ANL A,R6     | ANL A,R7     |
|   | 1 / 20       | 1 / 20       | 1 / 20       | 1 / 20       | 1 / 20       | 1 / 20        | 1 / 20       | 1 / 20       |
| 6 | XRL A,R0     | XRL A,R1     | XRL A,R2     | XRL A,R3     | XRL A,R4     | XRL A,R5      | XRL A,R6     | XRL A,R7     |
|   | 1 / 20       | 1 / 20       | 1 / 20       | 1 / 20       | 1 / 20       | 1 / 20        | 1 / 20       | 1 / 20       |
| 7 | MOV R0,#data | MOV R1,#data | MOV R2,#data | MOV R3,#data | MOV R4,#data | MOV R5,#data  | MOV R6,#data | MOV R7,#data |
|   | 2 / 22       | 2 / 22       | 2 / 22       | 2 / 22       | 2 / 22       | 2/22          | 2/22         | 2 / 22       |
| 8 | -            | -            | -            | -            | -            | -             | -            | -            |
| 9 | SUBB A,R0    | SUBB A,R1    | SUBB A,R2    | SUBB A,R3    | SUBB A,R4    | SUBB A,R5     | SUBB A,R6    | SUBB A,R7    |
|   | 1 / 26       | 1 / 26       | 1 / 26       | 1/26         | 1/26         | 1/26          | 1/26         | 1 / 26       |
| А | -            | -            | -            | -            | -            | -             | -            | -            |
| В | CJNE R0,     | CJNE R1,     | CJNE R2,     | CJNE R3,     | CJNE R4,     | CJNE R5,      | CJNE R6,     | CJNE R7,     |
|   | #data, rel    | #data, rel   | #data, rel   |
| C | 3/32/43      | 3 / 32/ 43   | 3/32/43      | 3/32/43      | 3/32/43      | 3/32/43       | 3/32/43      | 3/32/43      |
| С | XCH A,R0     | XCH A,R1     | XCH A,R2     | XCH A,R3     | XCH A,R4     | XCH A,R5      | XCH A,R6     | XCH A,R7     |
|   | 1 / 21       | 1/21         | 1 / 21       | 1/21         | 1/21         | 1/21          | 1/21         | 1 / 21       |
| D | DJNZ R0,rel  | DJNZ R1,rel  | DJNZ R2,rel  | DJNZ R3,rel  | DJNZ R4,rel  | DJNZ R5,rel   | DJNZ R6,rel  | DJNZ R7,rel  |
|   | 2 / 24 / 28  | 2 / 24 / 28  | 2 / 24 / 28  | 2 / 24 / 28  | 2/24/28      | 2/24/28       | 2 / 24 / 28  | 2/24/28      |
| Е | MOV A,R0     | MOV A,R1     | MOV A,R2     | MOV A,R3     | MOV A,R4     | MOV A,R5      | MOV A,R6     | MOV A,R7     |
|   | 1 / 20       | 1 / 20       | 1 / 20       | 1 / 20       | 1 / 20       | 1 / 20        | 1 / 20       | 1 / 20       |
| F | MOV R0,A     | MOV R1,A     | MOV R2,A     | MOV R3,A     | MOV R4,A     | MOV R5,A      | MOV R6,A     | MOV R7,A     |
|   | 1 / 19       | 1 / 19       | 1 / 19       | 1 / 19       | 1 / 19       | 1 / 19        | 1 / 19       | 1 / 19       |

## Table 4. Hexadecimal instruction codes (continued)

1/12/23 means: instruction over one byte / 12  $\mu s$  min / 23  $\mu s$  max.

(\*) Instruction already existing in the 8051 but with a different function for the interpreter.


|    | dified<br>tructions     |                                                                                                                                                                                                                                                                                                                                                               |
|----|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | RET                     | When the interpreter finds the RET code, the program is ended. GemCore returns the XDATA RAM memory data, R4 pointing to the first byte to be returned and R0 to the byte following the last response byte.                                                                                                                                                   |
|    | RETI                    | When the interpreter finds the RETI code, the program is ended. GemCore returns the contents of the registers in the following order:<br>PC A R0 R1 R2 R3 R4 R5 R6 R7 C<br>This instruction is used for software development                                                                                                                                  |
| Ma | cro-                    | This instruction is used for software development.                                                                                                                                                                                                                                                                                                            |
|    | mmands                  |                                                                                                                                                                                                                                                                                                                                                               |
|    | %RET_OK                 | When the interpreter finds the RET_OK code, the program is ended. GemCore returns the last contents of the XDATA RAM memory, R4 pointing to the first byte to be returned and R0 to the byte following the last response byte.<br>S = 00h and the two status bytes SW1 = 90h and SW2 = 00H are added at the end of the message.                               |
|    | %RET_NOK<br>(ERROR)     | When the interpreter finds the RET_NOK instruction, the program is ended.<br>GemCore returns the last contents of the XDATA RAM memory, R4 pointing to<br>the first byte to be returned and R0 to the byte following the last response byte.<br>S = E7h, $SW1 = 92h$ and $SW2$ returns an error code. These two bytes are added at<br>the end of the message. |
|    | %RET_ERR<br>(ERR1,ERR2) | Same as $\%$ RET_NOK but with SW1 = ERR1 and SW2 = ERR2.                                                                                                                                                                                                                                                                                                      |
|    | %VCC_OFF                | This command powers down all the smart card contacts as per ISO 7816-3 standard specifications.                                                                                                                                                                                                                                                               |
|    | %VCC_ON                 | This command initializes the smart card contacts.<br>If a card is present and is not short circuited, the following steps are carried out:                                                                                                                                                                                                                    |
|    |                         | • VCC contact set at 5V.                                                                                                                                                                                                                                                                                                                                      |
|    |                         | • VPP contact set at 5V.                                                                                                                                                                                                                                                                                                                                      |
|    |                         | • RESET contact set to level 0.                                                                                                                                                                                                                                                                                                                               |
|    |                         | <ul> <li>CLOCK contact set to level 0.</li> <li>I/O contact set to level 1 (bick impedance)</li> </ul>                                                                                                                                                                                                                                                        |
|    |                         | <ul><li>I/O contact set to level 1 (high impedance).</li><li>C4 contact set to level 0.</li></ul>                                                                                                                                                                                                                                                             |
|    |                         | <ul> <li>C8 contact set to level 0.</li> </ul>                                                                                                                                                                                                                                                                                                                |
|    | %CLR_RST                | This instruction sets the smart card's RESET contact to 0.                                                                                                                                                                                                                                                                                                    |
|    | %SET_RST                | This instruction sets the smart card's RESET contact to 1. It is only operative if the smart card is powered up.                                                                                                                                                                                                                                              |
|    | %CLR_IO                 | This instruction sets the smart card's I/O contact to 0.                                                                                                                                                                                                                                                                                                      |
|    | %SET_IO                 | This instruction sets the smart card's I/O contact to 1. It is only operative if the smart card is powered up.                                                                                                                                                                                                                                                |
|    | %CLR_CLK                | This instruction sets the smart card's CLOCK contact to 0.                                                                                                                                                                                                                                                                                                    |

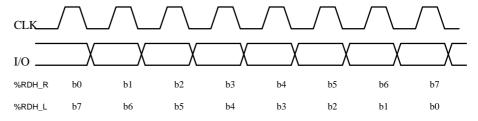
| %SET_CLK             | This instruction sets the smart card's CLOCK contact to 1. It is only operative if the smart card is powered up.                                                                                                                                               |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| %CLR_C4              | This instruction sets the smart card's C4 contact to 0.                                                                                                                                                                                                        |
| %SET_C4              | This instruction sets the smart card's C4 contact to 1. It is only operative if the smart card is powered up.                                                                                                                                                  |
| %CLR_C8              | This instruction sets the smart card's C8 contact to 0.                                                                                                                                                                                                        |
| %SET_C8              | This instruction sets the smart card's C8 contact to 1. It is only operative if the smart card is powered up.                                                                                                                                                  |
| %SET_VPP<br>(VALUE ) | This instruction sets the smart card's VPP contact to the voltage specified in the VALUE parameter and waits for 200 $\mu$ s (VPP rise time). It is only operative if the smart card is powered up.                                                            |
|                      | <i>Note:</i> The VPP voltage value is coded in VALUE in 0.1V steps.                                                                                                                                                                                            |
| %IO_TO_C             | This instruction copies the state of the I/O contact into the C bit.                                                                                                                                                                                           |
| %С_ТО_Ю              | This instruction copies the level held in C to the smart card's I/O contact. It is only operative if the smart card is powered up.                                                                                                                             |
| %CLK_INC             | This instruction allows pulses to be generated on CLK. The total number of packets is indicated in A (0 to 255).<br>CLK is set to 0 for 10 ms then to 1 for 10 ms. At the end of the sequence, CLK is set to 0.                                                |
| %CLK_INC8            | This instruction allows eight pulse packets to be generated on CLK. The total number of packets is indicated in A (0 to 255). CLK is set to 0 for 10 ms then to 1 for 10 ms. At the end of the sequence, CLK is set to 0.                                      |
| %GET_D               | When the 3.68 MHz asynchronous clock is activated on CLK, this command reads eight bits from the I/O in asynchronous mode and classes them in A using the direct convention.<br>The configuration is 9,600 baud, 8 bits, even parity, 1 stop bit, 1s time-out. |
| %GET_I               | Same as GET_D, but the eight bits read are classed in A using the inverse convention.                                                                                                                                                                          |
| %SEND_D              | When the 3.68 MHz asynchronous clock is activated on CLK, this command writes the contents of A on the I/O in asynchronous mode using the direct convention. The configuration is 9,600 baud, 8 bits, even parity, 1 stop bit, 1s time-out.                    |
| %SEND_I              | Same as SEND_D, but the eight bits are written to the I/O using the inverse convention.                                                                                                                                                                        |

## **%RDL\_R** This command reads eight bits and classes them in A with a right rotation.

## **%RDL\_L** This command is the same as RDL\_R but with a left rotation

The sequence for these two commands is as follows:




- CLK contact set to 0 for 10 µs.
- CLK contact set to 1 for 10 µs.

The I/O line is read 5µs before the CLK rising edge.

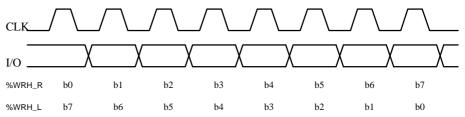
**%RDH\_R** This command reads eight bits and classes them in A, with a right rotation.

**%RDH\_L** This command is the same as RDH\_R but with a left rotation

The sequence for these two commands is as follows:



- CLK contact set to 0 for 10  $\mu s.$ 


- CLK contact set to 1 for  $10 \ \mu s$ .

The I/O line is read  $5\mu s$  **after** the rising edge of the clock. The first bit to be read is b0 of A. The last bit to be read is b7 of A. At the end of the command, CLK is set to level 0.

# **%WRH\_R** This command writes the contents of A on the I/O contact, with a right rotation.

# **%WRH\_L** This command is the same as WRH\_R but with a left rotation (bit b7 of A is the first bit to be sent and bit b0 is the last).

The sequence for these two commands is as follows:



- CLK contact set to 0 for 10 µs.

- CLK contact set to 1 for 10  $\mu s$ 

The bit to be sent on I/O is set 5  $\mu$ s **before** the rising edge of CLK. Bit b0 of A is the first bit to be sent and bit b7 the last. At the end of the command, CLK is set to level 0 and the I/O line is set to a high impedance level.

- **%WRL R** This command writes the contents of A on the I/O contact, with a right rotation.
- **%WRL\_L** Same as WRL\_R but with a left rotation (b7 of A is the first bit to be sent and bit b0 is the last).

| The sequen | ce for the |    | minanus | 15 45 10110 | ws. |    |    |    |
|------------|------------|----|---------|-------------|-----|----|----|----|
|            |            |    |         |             |     |    |    |    |
| I/O        |            |    | Χ       | Χ           | Χ   | Χ  | Χ  | X  |
| %WRL_R     | b0         | b1 | b2      | b3          | b4  | b5 | b6 | b7 |
| %WRL_L     | b7         | b6 | b5      | b4          | b3  | b2 | b1 | b0 |

The sequence for these two commands is as follows:

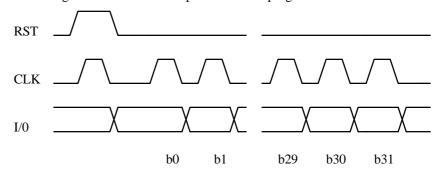
- CLK contact set to 0 for 10  $\mu s.$ 

- CLK contact set to 1 for 10  $\mu$ s.

The bit to be sent on I/O is set 5  $\mu$ s **before** the falling edge of CLK. Bit b0 of A is the first bit to be sent and b7 the last. At the end of the command, CLK is set to level 0 and the I/O line is set to a high impedance level.

**%RST\_PUL** This command generates a logical pulse 1 for 10 µs on the RESET line and then resets the line to level 0.

**%CLK\_PUL** This command generates a logical pulse 1 for 10 µs on the CLK line and then resets the line level to 0.


# **%WAIT\_US** This command waits for the length of time specified in the TIME parameter. The waiting time equals TIME $* 10 \,\mu$ s.

## %WAIT\_MS (TIME)

This command waits for the length of time specified in the TIME parameter. The waiting time equals TIME\* 1ms.

%RESET

This command executes the RESET synchronous card sequence with the GPM2K/8K protocol. GemCore returns the 32 bit ATR. Executing the command interrupts the current program.



The RST and CLK signals are forced to level 0 for 10µs.

The CLK signal rises 5µs after the RST rising edge and remains at 1 for 40µs.

The RST signal falls  $5\mu$ s after CLK and remains at 0 until the end of the sequence. The CLK high and low levels remain constant for 10 $\mu$ s while the ATR is read, and the data is read  $5\mu$ s after the rising edge of the CLK.

b0 is the least significant bit of the first byte returned by GemCore, b7 being the most significant bit.

b8 is the least significant bit of the second byte returned by GemCore, b15 being the most significant bit.

b16 is the least significant bit of the third byte returned by GemCore, b23 being the most significant bit.

b24 is the least significant bit of the third byte returned by GemCore, b31 being the most significant bit.

## Example

| GPM256 Read        | Interpreted GPM256 source code:                        |                                                                                                               |                                                                                                                                                                                                                                |  |  |  |  |
|--------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Command            |                                                        |                                                                                                               | <ul> <li>; Initialization:</li> <li>; CLA, INS, A1: not used</li> <li>; A2 = R7: location of first byte to be read</li> <li>; Lout = R3: number of byte to read</li> </ul>                                                     |  |  |  |  |
|                    | 81<br>71<br>61                                         | %CLR_C4<br>%SET_CLK<br>%CLR_CLK                                                                               | ;<br>; Clears the internal counter<br>;                                                                                                                                                                                        |  |  |  |  |
|                    | 91<br>EF<br>73                                         | %SET_C4<br>MOV A,R7<br>%CLK_INC8                                                                              | ;<br>; Selects the first byte to be read<br>;                                                                                                                                                                                  |  |  |  |  |
|                    | 82                                                     | READ:RDL_BYTE                                                                                                 | ; Reads one byte                                                                                                                                                                                                               |  |  |  |  |
|                    | F6<br>08<br>DB FB                                      | MOV@R0, A<br>INC R0<br>DJNZR3, READ                                                                           | <ul><li>Puts the byte in the output buffer</li><li>Reads the next byte</li></ul>                                                                                                                                               |  |  |  |  |
|                    | 42                                                     | %RET_OK                                                                                                       | ; Returns the result and adds 90h 00h when<br>; all the bytes are read                                                                                                                                                         |  |  |  |  |
| Formatted          | 16h CLA I                                              | INS A1 A2 Lin <d< th=""><th>ATA IN&gt; Lout Lcode <code></code></th></d<>                                     | ATA IN> Lout Lcode <code></code>                                                                                                                                                                                               |  |  |  |  |
| GemCore<br>Command | Command:<br><b>16h</b> 00h 1<br>82h F6h 0<br>Response: | not used.<br>location of<br>no byte to<br>not used, e<br>h number of<br>Ch number of<br>h 71h 61h 91h EFh 73h | Only for card driver compatibility.<br>If the first byte to be read.<br>be sent to the card.<br>empty field.<br>bytes to be read.<br>bytes in the code<br>82h F6h 08h DBh FBh 42h<br>YYH OCH 81h 71h 61h 91h EFh 73h<br>Oh 00h |  |  |  |  |

At press time, this guide is as thorough and correct as possible; however, information herein contained may have been updated after this date. GEMPLUS reserves the right to change the functions and specifications of itsproducts at any time without prior notice. This document was prepared by GEMPLUS for both its clients and for its owninternal use. Information herein contained is the sole property of GEMPLUS and shall not under any circumstances be reproduced without prior consent of the company. © Copyright GEMPLUS, 1998. Smart Cards and Smart Card readers are patent protected by INNOVATRON and Bull CP8 and are produced by GEMPLUS under license. MS-DOS® and Windows® are registered trademarks of Microsoft Corporation Patented by Bull CP8 - Patented by Innovatron. Printed in France. GEMPLUS, B.P. 100, 13881 GEMENOS CEDEX, FRANCE. Tel: +33 (0)4.42.36.50.00 Fax: +33 (0)4.42.36.50.90 Document Reference : E5221031/DPD04611B00